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Derived and Investigated are the equations of Ideal (unperturbed) and per- 
turbed operation of a generalized system of inertial navigation which deter- 
mines the coordinates of a moving object from the measurements of three 
linear accelerometers and three angular velocity meters measuring absolute 
angular velocity. The instruments are located along the axes of an ortho- 
gonal trihedron, the origin of which coincides with a certain point in the 
moving object. 

In contrast to [l and 23, the orientation of the trihedron axes Is arbi- 
trary. 

The equations of ideal operation take into account the non-central nature 
of the Earth's gravitational field. The equations of perturbed operation 
Include instrument error effects. 

Rrror equations are derived and Investigated not only for small but also 
for the finite values of the variables of the perturbed operating conditions. 

The particular cases are the equations and the results of investigation 
of the particular control systems considered in [l to 73. 

1, Let us introduce the right-handed orthogona? systems of coordinates 

G&lt and Qlc%llC * The coordinate system O,5nf Is an inertial system for 

which Newton's laws of dynamics are valid by definition. The choice of the 

location of point & and orientation of the axes r;nC are not subject to 

other conditions. The origin of the system O,snC coincides with the 

Esrth's center. The orientation of the axes of the O,gnC system is invari- 

ent with respect to the inertial Sy6tem. Without loss of generality, their 

orientation can be considered Identical. 

Let us introduce also the systems of coordinates OsnC and Oxyr with 

the origin at a Certain point of the moving object (not necessarily at 

the center of mass). 'The orientation of the 5~qC system of coordinates 

coincides with the corresponding orientation of the O&nC, O,$nC systems 

of coordinates. The orientation of the Oxyz system is arbitrary. 
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Finally, let us 

of which Is at the 

Identical to those 

Introduce the system of coordinates O,xyz , the origin 
Earth's center, while the orientation of the axes Is 

of the trlhedron Oxyz . 

The problem which Is to be solved by the Inertial system is the determl- 

nation of the Cartesian coordinates 5, q, C of the point 0 in the object 

within the coordinate system O,~TJ< , and the parameters defining the orlen- 
tatlon of the object relative to the xv< axes. 

Let along the edges of the Oxyz trihedron, there be installed three 

accelerometers and three sensors of the projection of the absolute angular 

velocity of the Oryx trlhedron upon its axes. 

We will denote the accelerometer measurements by nl, n,, n,, the pro- 

jections of the absolute angular velocity measurements by m,, my, mr, and 

introduce the vectors 

n = n, x + 4 y + n,z, m=m,x+m,y+m,z=w (1.1) 

where I) Is the absolute angular velocity of the trlhedron 0ry.z , and x, 

r', 8 are the unit vectors of the corresponding axes. 

Let us define 

the point 0 . 

n , assuming unit accelerometer point masses located at 

If r,,, Is the radius vector of the point 0 In an inertial system of 

coordinates, then the condition for relative equlllbrium of the sensing mass 

of &he accelerometer is of the form 

#r,,,/dt" = F(r,z) + f (l-2) 

where F(reon) Is the geometric sum of the sensing mass attraction forces due 

to the combined multitude of the celestial bodies, while i Is the sum of 

the forces acting on the sensing masses through their suspensions. 

In an accelerometer the sensing mass Is usually suspended elastically 

[I and 23. me magnitude of the elastic deformation of the suspension Is 

proportional to tne force ? and Is th e output of the accelerometer*. There- 

for , assuming the proportionality coefficient unity, we have 

n = ctaroz/cEta - F(roz) (l-3) 

Note that the differentiation In Formula (1.3) 1s carried out In the sys- 

tem of coordinates Op$qC . 

If r denotes the radius vector of the point 0 relative to 0,, and 

r,, Is the radius vector of the point O1 relative to Oar then by taking 

into account that 

ro2 = r + r01, d2ro,/cZt2 = F(rol) (1.4) 

l Here the suspension Is assumed tc be a spring while In some practical 
accelerometers the elastic forces may also be different, e.g. electro- 
magnetic. 
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and by introducing the special designation g(r) for the Earth attraction 

force on a unit mass located at 0 , we get 

n = dar/dta - g(r) 4 FI(O) - Fl(r) u -5) 

In (1.5) the B,(r) Is determined now by the attraction field at the point 
0 of all the celestial bodles with the exception of the Earth. 

Let us consider, for the time being, that the object motion (point 0) 

occurs at a small distance above the Earth's surface (compared with its 

radius, for example). Then the difference 

F, (0) - F, (r) 

of the attraction forces at points 0 and O1 
for the nearest celestial bodies including the 

wlth great accuracy 

becomes negligibly 

Moon and the Sun. 

n = d2r t dt2 - g (r) 

(W 
small even 

Therefore, 

(1.7) 

Since the system of coordinates O1<nC translates relative to O,gnC, 

the differentiation in the formula (1.7) can be considered carried out in 
the O,cn; system . 

2. Let us construct the equations for ideal operation, 1.e. the equations 

for unperturbed functioning of the inertial system. 

Projecting on the O,xyz axes 

dr . 
dr=r +wxr, 

where the 

system of 

a! by m 

system 

t 

local derivatives denoted by dots are with respect to the O,xuz 

coordinates, With the aid of (2.1) from (1.7), and by replacing 

In accordance with (1.11, we get by Integrating in the &xgz 

dr 

dt= In -mx -$-+g(r)ldt+$, r= \(-$-mxr)dt+r' 

0 0 (2.2) 

With the aid of the computers the relatlonshps (2.2) permit determination 

of the Cartesian coordinates $3 y9 = of the point 0 in the &X~Z coordi- 

nate system fof: the quantities n,, ny, n, ; % J my, m, and the initial 
values r", g, provided, of course, that Q~(x,u/,z), o,(~,y,z) and 

Bz(T..Y,X) are known, which will, be the case If, for example, the Earth's 

gravitational field Is central (more correctly, spherical). 

In order to pass to the Cartesian coordinates 5, n, 6 of the point 0 

in the system OlfnC , It is necessary to model the equation 

t= S(e x m) dt + to ceea (2.3) 
0 
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along with (2.2) which permits, for m,, m,, mi and the mutual disposition 

of the systems of coordinates 01 zn?6 and u,xy.~ at the Initial time, the 

determination of the direction cosines between the unit vectors {, 11, C 

and X, y, E and Equatlons 

E = t.r (EfiU (2.4) 

which effect the passage from the coordinates x, ut 2 to the coordinates 

5, ri> c In (2.3) and (2.4) and the sequel, the symbol (:nc) placed near 

the formula denotes cyclic Interchange of the variables and the indices. 

It is obvious that the orientation of an obJect in space is given by its 

position relative to the trihedron 0x2s which requires an additional 

IneaSUrement either of the position of the trihedron OX&? relative to the 

ob jeer;, or the angular velocity of rotation of the. set Oxy.? relative to 

the object and the solution of the equations similar to (2.3). 

If the Earth’s gravitational field Is assumed spherical, i.e. 

g tr) = - -& g (r) (2.5) 

then Equations (2.2) and (2.3) are solved’independently. In the opposite 

case, the gravitational field can be given only In the Earth’s coordinate 

system or in a coordinate system wherein the motion of the Earth is known, 

for example,in the O,t;ni; coordinate system. In this case the given func- 

tions will be gt (g, q, 6, I), g? (h, 11, j, t), and g;(g, ?j, 5, tj . In order to 

determine g,, Q,. and gz it is first required to obtain the solution of 

Equation (2.3), and then solve simultaneously (2.2) and (2.4). 

It 1s understood that knowing the Cartesian coordinates j, n, C it is 
possible to obtaln any other ccol,dinates, in the general case curvilinear 
and nonorthogonal coordinates x1 I x2, %> which may be dependent on :, n, 
c and time t If the surfaces of equal values of the coordinates x1, x2, 

will change their position relative to the trihedron 
%e latter will take place, 

Cl <n: with time. 
fcr instance, if the coordinates x1 f x2, x3 are 

rigidly attached to the Earth. 

In order to pass to the coordinates Q, wa, n3 , it is obviously neces- 
sary to specify three relationships of the type 

airs, rl, 5; x1, x2, x3, t1 = 0 (i = i, 2, 3) (3.6) 

which in the whole performance region of the lnertlal system must satisfy 
the usual conditions of unique correspondence of the r;, n, 6 and x,, x*, 
x3 coordinates, i.e. the determinants of the Jacobi functions ei, cz, :3 
of 5, n, 6 and x1 , x2, wJ must be nonzero. 

It is worth to note that the construction of the equations for ideal 

performance in their Integral form (the form in which they are simulated by 

the computer of the Inertial navigation system [Z]) is not entirely unique. 

They may be constructed in several equivalent but different forms. 

For example, in place of Equation (2.2) one may take the equivalent equa- 
tion t t 

r= (II - XXI x (I’ -+ XII x r) + g (r)) dt -i- (i)” + w” x r0 
3 

dt -t r” (1.7) 
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Equations (2.2) and (2.7) presuppose Integration along those axes in 
Oxyz (O,xyz),where n,, ny, n, and m,, m,, m, 
the Cartesian coordinates r, z/, o. 

are measured, and obtaining 

Another construction 1s essentially different. Utllizlng (2.x), n can 
be projected on the axes of the set UlsnC with integration carried out 
along the axes of this set and then obtaining the Cartesian coordinates 5, 
n> 6 * One can project n along the axes of any other orthogonal system 
#,f'n'C'(with the origin at the geocenter O1 ) the motion of which 1s lcnown 
relative to O,fnc , the axes of such system may be, for example, rigidly 
attached to the Zarth. Finally, one may project n along the normals to 
the coordinate surfaces n, = const , carry out the integration along these 
normals and obtain as the result of integration the coordinates x1, x2, x3 * 

A possible intermediate method for constructing the equations for ideal 
performance is to carry out the first integration along one set of directions 
(not necessarily coinciding with the directions of the 
ments), 

n components measure- 
and the second integration along another set of directions. 

Equations (2.3) can also be expressed in other forms, for example, by 
introduction of ENer angles, 
Klein parameters [a and 93. 

the Oldlng Rodrlgues parameters or the Cayley - 

All variations for constructing the equations of ideal performance differ 

insignificantly in the number of required computer operations if one con- 

siders the complete equations for ideal performance, an drbltrary orientation 

of the trlhedron Oxyz , and an arbitrary motion of the object. The possl- 

billty of slmpllfylng the equations for ideal performance Is dependent on the 

choice and the maintenance of a SpeclaI orlentatlon of the 0xy.z trlhedron, 

on the Imposition on the motion of the object of definite limitations, and 

on the neglecting of certain terms In the equations for Ideal performance, 

the inclusion of which leads to the accuracy beyond that provided by the 

inertial system. 

The coordinate set Ox&e can be rigidly attached to the object. Then 
the complete system of equations for ideal performance is utilized. The 
solution of the system (2.3) at the same time also determines the orientation 
of the object In space. 

The coordinate set 0xy.s may be fixed in space [23, for example, its 
axes may be parall .el to rn< . Then the integration yields immediately the 
coordinates <, n. 
the set Oxyt-. 

C and Equations (2.3) fall out. Such orientation. of 
c&be ensured by a stabilized platform. 

If the axes of the set Oxye are parallel to the axes 5', tl*r 6's the 
orientation of which in the system O,<T& Is a known function of time, then 
the Cartesian coordinates c’* n', C' are obtained bv direct integration. 
At the same time the position of the set Cxyz relative to the aies of O<nC 
must repeat in time the given orlentatlon of the system OIE('n'C' relative __ ._ 
to O,Slj6 . 

The coordinate set Dxy~ can be oriented also with regard to the co- 
ordinates n1, %r x3 of the point Q of the object as determlned by the 
inertial system Itself. For example, one of its surfaces can be a tangent 
surface to the area of constant value of some coordinate, for Instance, We, 
then one axis of the set OXUZ , such as Ox , is normal to this surface. In 
this case the integration along the axis Ox will yield lmmedlately the 
coordinate nl.. If the coordinates xl, na, x3 are orthogonal, then it is 
possible to locate the axes Oy and 08 along the normals to the surfaces 

x2 f const and x3 = const and determlne n2,k3 by Integration. In the 
case of nonorthogonal set of coordinates it Is possible to pass to the non- 
orthogonal trnlhedron 0xy.z . 

Examples of the orientation of an orthogonal set Oxyz which account for 
the present position of the object are: the realization of an tracking 
Darboux trihedron on a sphere of radius P , concentric with the Earth, If 
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the coordinates n3 are spherical coordinates (geocentric or geo- 
desic), or a trac~&gn~~ihedron on the surface h = const if the defining 
coordinates are the latitude, longitude, and height h above sea level. 

The simplest example of expedient transformation to a nonorthogonal tri- 
hedron is the case when the defining coordinates are: the distance r from 
the center of the Earth O1 and the angles n, and n2 between r and the 

In this case, having located the axis 02 along p, 
should be located in the planes of&~ and 00,n 

surfaces 
case the axes Or, Oy and 02 are normal to the 

the axeS ;t = const , n2 = const and r = const and the angle between 
and Oy is not a right angle and debends upon the coordinates 

Ml> wp * 
If the object moves along the surface xX = const then the equations 

for ideal performance are simplified by the fact that’the part related to 
the definition of x1 is eliminated so that no accelerometer along the nor- 
mal to the surface R, = const should be needed. Analogous simplifications 
are possible when the surface is not a coordinate but is given by the re- 
latlonship 0, (x1, X2, KS) = 0 . Example of such simplified systems with 
two accelerometers (or equivalent systems with two accelerometers) are the 
control systems presented in [l to 53. 

Finally, if the object moves along the line u1 (x1, Q, Q, ) = 0 , u, (w, , 
a=, Xc) = 0 , then the second accelerometer may be removed from the system 
with the remaining one being oriented along the tangent of this line. 

Of co&se, the enumerated simplifications are conditional on the impo- 
sition of constraints upon the motion of the object. In particular, however, 
the elimination of one or even two accelerometers Is possible in the absence 
of such constraints if one or two coordinates are determined not by the 
inertial system but by means of other sources of information. For example, 
the distance to the Earth’s center may be determined by means of a radio 
altimeter [ 21. 

We will note also that along with the omission of some negligible parts 
in the complete equations for Ideal performance, the simplification of these 
equations may also be effected by forming part of the terms not as functions 
of the present performance of the object’s motion, but as functions of its 
programed values, i.e. as functions of time. 

The equations for ideal performance of the inertial system considered 

above, were formed with the assumption that the motion occurs at such prox- 

imity to the Earth’s surface that in (1.5) the difference (1.6) caa be neg- 

lected. It is easy to see that this limiting assumption need not be made. 

Let there be n celestial bodies, the attraction of which should be 
evaluated, takin: the difference (1.6) into account. 

We will denote by r, the radius-vector of the center of mass for the 
t-th celestial body relative to the Earth’s center of mass O1. Then the 
radius -vector r,rl’ of the point 0 relative to the center of the f,-th body 
is equal to 

,.@I= r - r4 2 (2.8) 

If one considers that the masses of the considered celestial bodies and 
their motions relative to the Earth are known (the object, obvious1 
not perturb the motion of the Earth or that of the celestial bodies 
that their attraction fields are central, then [lo] 

Fl (0) - Fx (r) L-Z 

where m, is the mass of the t-th 
constant. 

Taking into account (2-q), the 
Equation 

(2.9) 

celestial body, and y a gravitational 

first equation in (2.2) is replaced by 
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The projections OS bt on the axes of Otxys in (2.16) are determined by 
the projections on the axes of Oltnf 
and by Formulas (2.3) 

, which are known as functions of time, 

!Phe consideration of noncentrality in the fields of attraction of the 
considered celestial bodies does not introduce principal dlfflcultles In the 
construction of the equations for Ideal performance but does make these equa- 
tions substantially more unwieldy, since the determination of the attraction 
fields requires introduction OS n systems of coordinates each of which Is 
rigidly attached to the t-th celestiai body. In this case, it becomes neces- 
sary that the motion of each celestial body about its center of mass with 
respect to the system of coordinates O,sslC (or OlmC) be kmwn. 

3. Let us derive the error equations, i.e. the equations describing the 

perturbed operation of the inertial system when the initial conditions of 

the equations for ideal performance are given inaccurately and the elements 

of the s&tern have instrument errors, The error equations determine the sta- 

bility of performance of the inertial system and the dependence of its accu- 

racy upon the magnitude of errors in setting up the initial conditions and 

upon the Instrument errors of the elements. 

As the instrument errors we 

It can be shown that any other 

basic ones. 

will take the basic ones: Am and An [2]. 

errors can always be reduced to the equivalent 

From (2.2), assuming now 

I-’ = I + 6r, m’ = ti) + Am, n’=n+ An (3.4) 

we obtain t 
dr’ ‘* in’ - =: 

\ dt e 
-m’ x -$- + g (r’)l dt + (-$)O 

0 (3.2) 

f’ =I: dt + (f’)O 
0 

Subtracting from (3.2) the equations for ideal performance (2.2) and 

nOting that m = PI we obtain, using the notation (3.1), the integral error 

equations . 

--AmxFs -(w+Am)xg$, 

+ g (r + 6r) - g (r)]dt + fF 

br= \($- Am x r 
6 

- (o + Am) x br) dt + 6r” 

(3.3) 

Differentiating in the same system of coordinates in which the integrals 

are taken, i.e. in the Oxya system, we obtain the differential equation 
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6r" + Z(w + Am) x 6r' + (co + Am) x [(w + Am) x 6~1 + 

f (w' + Am’) x Sr - g (r + dr) + g (r) = An - 2Am x r’ - Am’ x r - 

- Am x (o xr) - (co -1 Am) x (Am x r) (X(1) 

with the initial conditions 
6r (0) = fir” 

6r’ (0) =: (fir’)” -A- (So’ - Am”) :,: (r’ $ 6r”) (3.5) 

For the given quantities w, Am, An, r projected on the Cxyz axes and 
the Initial Values 8r9, 6~” (dr’)” , the equation (3.4) yield5 the er:ors in 

determination of the Cartesian coordinates x,y,z by the inertial syctem. 
Equation (3.4) is exact. If In it the products of the projections Am and 

br are neglected, there results Equation 

8r”+ 20 x 6r’ + to x (0 x 6r) + w’ x 8r -g (r + 6r) + g (r) = 

=An-2Amxr*-Am.xr-Amx(~>:r)-~x(AR~xr) (3.6) 

with the initial conditions 

6r (0) -1 W, 6r’ (0) = (Sr.)’ + (~uJ” - Am”) x r’ (3.7) 

For Am = 0 , i.e. when the perturbations are merely due to the accelero- 

meter and the initial conditions errors, Equation (3.4) Is equivalent to 

(3.6). 

In (3.6) W, r, Am, dr are given in the projections on the O,xya axes 

and w is the absolute angular velocity of rotation for the O,xys trih?d- 

ron. Therefore (3.6) can also be written as 

$+g(r)--g( r + 6r) I= An - 4m .c -$- - -& (Am x r) (3.8) 

‘*ihere 6r, r, Am, An are now determined by the projections on the axes of 

the O,<nC coordinate set. Note that the homogeneous equation (3.8) cor- 

responds exactly not only to (3.6) but also to (3.4) where the products of 

the Am and bF projections are retalned. 

Let us turn to the second group of equations for the inertial system per- 

formance, i.e. to Equations (2.3) and (2.4). 

We have from (2.3) 

St* + (W + Am) x Sg = 5 x Am fE*,Cf (3.9) 

Or, with the same eliminations as in passing from (3.4) to 3.6) 

St’ + w x SE = 5 x Am fZrli> (3.10) 

ort’lnally, analogous to (3.8) 

gs;“-EX Am (4iiF) (3.11) 
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where as in (3.8) ai, 6q, SC and Am are defined in the projections on the 

o1 5rlC axes. The initial conditions for Equations (3.9), (3.10) and (3.11) 

are obvious. 

From (2.4) we have 
8E = at-r (4%) (3.42) 

Denoting by by, the full error, and by 6r, the error defined by the 

second group of equations (3.9) and (3.12) or (3.10) and (3.lS), we get 

6r, = 6r + dr, (3.13) 

where 6r2 = (6&r) 5 -f- (6rl.r) rl -f- @WC (3.14) 

and br is the solution of the error equations of the first group (3.4) or 

(3.6). 

In concluding the deviation of the error equations let us pass from the 

vector equations (3,6), (3.10), (3.14) and (3.13) to scalar ones. If the 

variation In the noncentricallty of the Earth's gravitational field Is neg- 

lected and only the linear terms retained in the expansion of the difference 

g fr) - g (r + 8r) 2 then 

g (r) - g (r + Sr) = 6 + g (7) = g trt3r - 3r (1 r + Brj - r)l (3.15) 

Projecting now (3.6) on the axes ryt and taking into account (3.15), we 
. 

get the first group of error equations in the form 
(3.16) 

Bx” + (+ - coy2 - mz2 6x + (w, WY - 0,‘) 6y -- ) 

- ZW, 6,2_4* -f- (0, 0, -f- oy’) 65 + 264&k -- $- z (i r + 6r / - T) = 

= An, - 2 (Am,z’ - An,y’) - (An’,z - Ammz I;) - (s~x (Am,y + Am, Z) - 

- Am, (w, y + o I z) + 2~ (W !, Am, -+ CO z Am,) (q/z) 

The initial conditions of this group of equations are 

8x (0) = 8x0,! 

6~‘ (0) = (bx*)’ + (60,” - Am,‘) c3 - (&mzo - Amro)~o 

Let us find the equations for the projections on the axes xF,z of bxa, 

by,, 62, of the vector 6c, given by the relationships (3.10) and (3.14). 

Introducing the Cable of direction cosines 
X Y 2 ----- 

f. 

; 

aI1 aI2 a13 

an1 a22 a23 
(3.18) 

I: i a31' a32 / a33 

and observing that Equations (2.3) are equivalent to three systems of Scalar 

differential equations [q] 

ai, + o,ai, - OzUiz = 0 (i = 1,2,3) (123. .WZ) (3.19) 
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we obtain in place of (3.10) (3.20) 

hail’ + CC+, 6ai, - &jai, = Amz~is - Aq,ai, (i = 1,2,3) WB. au) 

Introducing the notation eX, ey and O1 for the quantities 

(3.21) 
and neglecting the squares of the variations of direction cosines a,, we get 
from (3.19) and (3.20) the relationships 

0,’ + o& - o&, = Am, w/z) (3.22) 

But e., er and 13~ are, according to (3.21), the components of small 

rotation 0 along the axes xyz . Therefore, (3.22) can be written in the 

form of Equation 
fX+a,x0=Am i 

de 
dt= d”) (3.23) 

with the initial condition e(O) = 8” determined by (3.X). 

Now It is obvious that 6r, = 8 X lp, wherefrom 

6x, = e,z - 0, y (WZ) (3.24) 
The full error, according to (3.13), Is 

arc, = a2+Ptxz (XrrG (3.25) 

where bx, by and 6.~ are defined bjr (3.16), and 6xa, 6~~ and bt, are 

given by (3.22) and (3.24). 

If in computing the difference (3.15) one considers the variation in the 
noncentrality of the Earth’s gravitational field, then it is necessary to 
retain the quadratic terms in the expansion of the spherical Part of the 
gravitational field since they are of the same order of magnitude as the 
linear part of the expansion forthe correction of nonsphericity (at least 
for the Earth’s fleld,in any case). 

Introducing the notation 

where 

g (r) = - f g (4 -t s (r) (3.26) 

s(r) = E, (z, ?/, 2) x + Ey (2, y* 4 p + E, (27 y, 4 2 

is a vector function of r characterizing the nonsphericity of the attrac- 
tion field, we get 

6r 
g(r) -g (r + W= - 7 g fr! + 

g (rl ~(rfsr)[*5(,r+sri--~-_-6~~_. 

- (grad F$X ) x - (grad cUBrl) y - (grad e$r,) z (3.27) 

Since (3.27) contains not only 6~ but also b&, then in this case the 
first group of the error equations is not separated from the second group. 
Similarly, the equations for ideal performance are not separated in consider- 
ing the noncentralitJr of the attraction field. 
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It is easy to Include In the first 
differences of other (other than Barth f 

roup of error equations the attraction 
celestial bodies at the Earth's cen- 

ter and at the point 0 of the present posltlon of the object ln accordance 
with the equations for Ideal performance (2.10). 

In this case bri 
related. 

- bfio, and the error equations of both groups are also 

4. Let u8 indicate now certain general properties of the error equations 

for the investigated generalized control system of Inertial navigation, and 

also show how to obtain from them the error equations for particular systems 

considered In [l to 53. 

The error equations (3.16), (3.22), (3.24) and (3.25) pemnit a group of 

transformations determined by the arbitrary rotation of the O1xyz (OXW) 
trlhedron In space. This property of the equations follows from the arblt- 

rary orientation of the coordinate set (trlhedron) Oxyz and the arbitrary 

P) . It can also be proved directly, analogous to the proof In [2]. There- 

fore the analysis of the error equations for the Inertial navigation system 

for any orientation of the set Oxya (&xy#) can be carried out relative 

to another set of coordinates (trlhedron) suitably selected. (Analogously 

as It was done In [2] relative to the rotation of the accompanying trlhedron 

in azimuth). 

Such a trlhedron can be, for example, O,g?jC fixed ln space. In this 

Case the error equations are obtained from (3.16), (3.22), (3.24) Md (3.25) 

If one assumes pi I 0. In place of (3.16) we obtain 

sg..+$sE-+5(1r+Br+r) 

= Ant- 2 (Am,g’ - Arnql’) - Am,‘5 + 

= 

(E?U 

6% rl (4.1) 

which follows also from (3.8), and In place of (3.22), (3.24) and (3.25) we 

get 

O< = AmE, SE, =0,5 --8rrl, SE, = at + SE, (Es) (4.2) 

In Equations (4.1) and (4.2) Ant, An,,, An<, Ame, Am,,, Amc 
are respectively, the projections of An and Am on the 5qC axes . They 

can be obtained from An., An,, An,, Am,, Am,, Am, if a,, (t) are known. 

Equations (4.1) and (3.8) permlt an Interesting analogy. They are analo- 
gous to the variational equations of the motion of a particle of unlt mass 
In the Earth's field of attraction when the motion of the point IE perturbed 
by the forces appearing on the r 
In particular, the equations (4.1 Yh 

t-hand side of Equations (4.1) and (3.8). 
and (3.8) are analogous to the equations 

of motion of a particle In a satellite cab!_n [ll]. The Indicated analogy 
permits, In the latter case, the application to the analysis of the first 
group of error equatlons.for inertial navigation of the well developed 
methods of celestial mechanics. 

Ii the attraction of celestial bodies other than the Earth Is also con- 
sidered, then the corresponding error equation will be analogous to the Per- 
turbed motion of a particle ln the field of attraction of n bodies. 
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Equations (3.161, (3.22), (3.24) and (3.25) are the error equations for 
an arbitrary control system. They are Valid, apparently, for the case when 
the orientation of the set Oxyr Is a given function of time, l.e,. does not 
depend on the coordinates determined by the lnertlal system, as well as when 
the orientation of the trihedron Is given as a function of coordinates de- 

termined by the inertial system. It is worth noting that In the latter case 
the position of the Oxl/r trlhedron is perturbed by the errors of the co- 
ordinate determination. 

The homogeneous equations of the first group (3.16) are exact. They de- 

scribe the perturbed operating conditions of the inertial system not only 

for small but also for large perturbations. 

Equations (3.22) and (3.24) of the second group are the equations for 

small deviations, since in passing from (3.20)~~ (3.22), the squares of 

ba,, (t) were dropped. In order to obtain Equations (3.22) and (3.24) for 

large perturbations it 1s necessary to utiline the theory of finite and not 

small rotations [93 in transforming the exact equations (3.10) and (3.20). 

Note that the second group of error equations for the Inertial system is 

of the same form as was obtained In [2], and for given dIJ (t) car be lnte- 

grated by quadratures, which follow from (4.2). 

Let us obtain from Equations (3.16) the equations of perturbed operation 

for the particular Inertial navigation systems investigated in [l to 51. 

Assuming in (3.16) 

and noting that 
r2 = Ea2 -t 9,” + Ce2 (4.4) 

therefore, within the accuracy of terms up to second order of magnitude 

1 f + lir j - r = %, SE+.’ + q* %,’ 4 E,K,’ (4.2) 

we obtain Equatlons (4.14) In the paper (23 for the Inertial system where 

the integration takes place along the directions fixed in absolute space. 

Mrectlng the axis 02 of the set Oxyz In the unperturbed state along 

I , and noting that In this case 

z=y=o, z=r (1.6) 

and within an accuracy of terms up to second order of magnitude 

6x=7$3, dy= -ra, dz===Qr, ir-f-&I--r=62 (4.7) 

we obtain Equations (3.9) in [2] for the system with three accelerometers 

located along the axes of the Darboux trlhedron on the sphere surrounding 

the Earth. 
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The first two equations in (3.16) in this case become the small oscillation 
equations for the Schuler pendulum [:5 and 123, tro-gyroscope vertical [4], 

gyro horizon compass [3], and the system considered In [l] If In (4.5) one 

lets 
62 = Cir = 0 (5.8) 

ln [l to 53, the small oscillation equations for systems near the position 

of relative equilibrium are given. ;&quations (3.16) are exact. They immedi- 

ately yield the equations for perturbed motion for arbitrary and not neces- 

sarily small deviations. 

Let, for example, the trihedron Oxys In the unperturbed position be the 

Darboux trihedron on a sphere [l to 51 surrounding the Earth. Let us denote 

it by OX,Y,Z~ retaining the notation xl/a for the perturbed position. Let 

the perturbed position of the set xya relative to the unperturbed be 

characterized by two angles * a and B according to the direction cosines 

table 
X ?I 2, 

X0 co5 p 0 sin p 

YO sin a siri p COSd - sin a Cos /I (4.9) 

GJ - cos asin p sin a cos a cos p 

The projections of the absolute angular velocity of the set 0~~2 upon 

its axes are expressed by means of the projections O+, WY,, wzO of the abso- 
lute angular velooity of the set ~x,y,z, on the axes xoyOr, and the angles 

a and fJ as follows: 

0, = wk. Cos p + mu0 sin a sin p - 0;” cos a sin /3 -/- a’ cos /3 

% = oy, cos a + wzO sin a + p’ (4.10) 
w, = Ox, sin p - ouo sin a cos p + oz, cos a cos /I -/- a’sin p 

For the system with two accelrrometers and the motion of the point 0 on 

a sphere of constant radius F it folloiis from (4.9) that 

6~ = - fcos ~1 sin p, 6y = rsin a, 6.2 = r (COS a COS p - 1) (4.11) 

Substituting (4.10) and f4.U) Into the first two equations in (3.16) we 
obtain after obvious groupings and simplifications l * 

p" + a’” sin $ cos p + 2~' (w,, sin 3 cos /3 - (4.12) 

- 0,. sin a co.3 f3 i_ 0,” cm a co? p> f q/,’ (cos a - cos p) + 

+ 02, sin a + 0,“’ sin a sin p + (wg2 - uzoQ cos a cos p - w~,~) sin p cos a + 

+ oG4 (cos p - cos a) sin p - oy,2 sin2 a sin p co.9 p -f- 

+ oxDouo (sin” p - co2 p) sin a + 

+ o,,OzI (co9 p cos a - cos p - sin2 p Cos a) + 

jo,o;.(:!cosacosp-1)sinasinp=O 

* The third rotation is IZIeSSential. It can be referred to the position 
of the x,y,z, set. 

** !i!he equations are homogeneous. 



a” COS j3 - 2ct’ p’ sin p -i- Zp’ (- 03%. sin TJ; -/- 0, sin a co.5 fl - (4.12) 

- 0~~ OOS a OOS p) + 0%’ (OOS /3 - CDS O) + Ova’ Sin a sin p - cont. 

- wz,’ Cos a sin B + (o02-- oq2 - wv,"(l - co9 a cos p) - 

- 6.&O' COS a COS p) Sin a - wx, ow co5 a Sin p - 0%. o,, sin a Sin p + 

+~,~,(~in2acas~-~t3s2acos~+cosa)=0, 02,2=g/f 

EQuations (4.10) coincide exactly with Che equations of the Schuler Pendu- 

lum E5 and 123 Mt? suspension paint of which moves on the sphere of radius r. 

Indeed, the pendulum equations, as projected on the axes rgz, me of the 
form 

ri;‘ + w,_, Hz - w, Hg = - IF,, Hu’ + o, Hz - a, H, = jr;: (4.13) 

For the Schuler p0~d~l~ [5 and 12J, the Projections of angular mOmentm 

are 
&=, = RZiFti,, Hv = ~~~~~~ HI = 0 (4.14) 

The components of P tin the x~L(o~~ are 

F,, = - mr (@r*’ + 0%x, a,,) t F,& - TM‘ k%,’ - @y, %,) 

I;;, = ml- h: + qJ - mg (4%) 

The substitution of (4.14), (4,15) and (4.10) into (4.13) gives kunedi- 

atefy Equations (4.12). Equations (4.12) are ale0 the equations of perturbed 

motion of systems If, 3 and 43. 

For constant Q-Q*’ Q&Y @Lo Equations (4-12) possess a first integral, In 
order to obtain It, it Is sufkcient to multiplk the first equation in’(4.12) 
by 8’1 the second equation by a’cosg and to add them. Integration of the 
sum yields 

v = (a'cos 8)2-t. p-- 20,~COSacas p + 

-t- %, a COSa Ct COS’ p + Ox.* (sins @+ 2 OOS CX 00s f3) + 

+ 0v,2 (Sins a CO@ p -+ 2 cos a cos f3) - ~~~~~, sin u sin p ~0s B + (UB) 

-t 2Q&,aG (cos a sin fi co9 @--- sin p) -j 

-k 2@Va@ze (sin a c0s 8 - sin a c0s u ~09 Pf = const 

!&e LiaPun0v stabillity condition for the solution (4.12) follows from 
(4.15) as 

~-Ws--_~-o,2;>il %l r, ?A (4.17) 

It was obtained earlier in [6 and ‘73 from consideration of the eqZ%ati#nS 
reducible to (4.12). 

Condition f’e.17) is a sufficient condition. The papers 16 and 131 show 
that condition (4.17) can be considered as a necessary stability conditkin 
If fully dissipative forces are assumed in the system. In this ConneCtkn, 
it is necessary to note that dissipative forces An inertial systems lead to 
the occurence of velocity deviations, and the systems of inertial navigation 
in the absence of velocity correction, tend to be designed so as to avoid 
dissipation. Therefore, arbitrary introduction of dissipative forces into 
the system requires great care In the fnveStig&tiOn of stability. 

In order to obtain the equations for perturbed Performance in a system 

with two accelerometers and lar$e deviations for I” = rft) when P is de- 

termined from auxiliary sources not connected with the operation of the 



Inertial system, the r should be considered a given function of time in 

(4.11). If r Is computed as a function of two coordinates determined by 

the inertial system, then in writing the equations of perturbed performance 

the variation of this function should be taken [2-j. 

In order to obtain the equations for perturbed performance for large 

deviations of the system [2] with the variables a, 8 and br , it is neces- 

sary in (3.16) to substitute 

6x = - (r + 6~) cos 6 sin f3, By = (r + 6r) sin a 

82 = (r + 8r) (cos a 60s p -1) + 8r 
in place of (4.11). 

(4.18) 

5. Let us investigate the stability of the inertial system performance 

for the case when the unperturbed &-axis of the set Oxys is directed 

along r , and w,, U,Q, UJ, and r are constant. From (3.16) 

jr +drI -r = 62 + 0 (62) (5.1) 
Retaining now on the right-hand side of (5.1) only bz , we note that 

Equations (3.16) become linear with constant coefficients, the character- 

istic equation of which is a cubic with respect to the square of the unknown 

¶ =p= 
d + 2q2 (@x2 + ay + 6&y + q i- 300" -j 36$ (0," + 

+ q/2 - 20,2) + (W,a + og2 + o,z)sl - 
- oo” (q,* - co,2 - ol;” - oz2) (20~ + ox2 + wy2 - 20,~) = 0 (5,2) 

For stability (non asymptotic) Equation (5.2) must have, as is known, 

negative or zero roots, and to multiply roots of the characteristic equation 

of the system (3.16) should correspond linear, elementary divisors of the 

characteristic matrix. 

In order to investigate the stability of the system (3.16), in the present 

case, one can utilize the fact that it can be considered as describing the 

motion of a particle of unit mass under the action of potential and gyro- 

scopic forces, 

The expression for the potential function can be written 

u = - $ i(w,2 - COY2 - 0,s) (Izs + (oo" - 0,s - 0,s) 6ys - 

- (20,z + ciL&2 + ov~~8za + 2co,o,8dy + (5.3) 

+ 20,w,8282 + 2opr 8y8zJ 

The following expressions can be considered as gyroscopic forces: 

20,8y' - 2w,82‘ fm@ (5.4) 
since the matrix of coefficients of these forces is antisymmetric [lb]. 

The system (3.16) has In this case the energy integral 
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ax.2 + by.3 + 62’2 - 2u = IJonst (5.5) 

which can be obtained directly i f Equatlons (3.16) are added, multiplied 

respectively by 6x', 6y', bz', and integrated 

WE 
2 

If the gyroscoplc forces (5.4) are rejected 

(f/J 

~ 

then there will remain only the potential iorces. 

I For stability of equilibrium under the action of 

only potential forces, the potential function 

,.,Cj (2/ 
must have a maximum at the equilibrium point, 

(3) 
Since the potential function (5.3) i:; a quadratic 

4 
R’ 

form, the conditions for a maximum are the Syl- 

vester conditions for positive-definiteness of 

Fig. 1 of a quadratic form. In the present case they 

are the inequalities 

oo2 - 0, 2_ NY2 - wz2 > 0, 20: - 20,2 + c!J,2 + coy3 < 0 (5.6) 

In Fig. 1 O2 = ~1,' i wla, the straight lines 1 and 2 corresponding to 

the equations (uo2 - iui2 - a2 -= 0 and 2~,* + 0’ - Z&I*” = 0 are plotted. 

The figure shows that the regions defined by (5.6) do not intersect, anr. 

therefore, the potential function has no maximum. 

Since In the present case the potential function is homogeneous of second 

degree then, according to the known theorem of Liapunov [15], the instability 

follows from the absence of the maximum without the necessity of considering 

the terms of higher orders. 

Let us return to the gyroscopic forces (5.4). 

In the regions (1) and (3) (see Fig. 1) where the de&ret. of instability* 

of the conservative system is odd, the gyrcscopic forcer, according to the 

Thomson-Tait theorem [16], cannct stabilize the equilibrium. 

In the region (2), where the degree cc‘ inrtability is even, the pocsibi- 

llty of stabilization by gyroscopic forces remains in principle. This stabi- 

llzation, as is known [Pj], has a temporary character and is destroyed by 

the forces of full dissipation. 

The stabilization by gyroscopic forces results if, for example, 

OX2 -to," =o$ UZ? = e2 (5.i) 

*where e2 is a sufficiently smail quantity. 

It can be easily shown that the polynomial (5.2) satisfies in this case 
the Hurwitz conditions. The discriminant A of the cubic equation obtained 
from (5.2) by substitution of the variable 

1, = ‘I + 219 (0 4 0 2-i- &2) (5.8) 

* The number of negative stability coefficients of PoincarP [15]. 
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is negative 

A= - &) pm g-a< 0 (5.9) 

All roots of the characteristic equation are therefore simple and purely 
imaginary. 

6. In conclusion, let us investigate the stability of a system with three 

accelerometers when the orientation of the set 0ny.z Is arbitrary, and 1~1 

for u(r) is given, in addition, from a source outside the inertial system. 

In this case it is necessary to make the following assumption in the error 

equations (3.16) 1r+tq --r=O 

and the error 

(3.16). 

It follows 

tions become 

in ITI should be referred to the right-hand side parts 

(6.1) 
in 

from (3.16), (3.8) and (4.1) that the homogeneous error 

(4%) 

equa- 

(6.2) 

From (6.2) it follows that for r = const when w02 = g/r is constant, 

the perturbed motion of the system is stable for any U,(C), w,(t), wu,(t). 

In this case for given all(t) the solution of (3.16) follows i~ediate~y 

from (6.2). 

For constant u),, wy, w, the stability can be detected also without re- 
ference to equations (3.8) and (4.1). 

In the present case the condition for the maximum of the potential function 
is reduced to one inequality 

woz- 0 2- I: 0 U s- OLZ> 0 (6.3) 

Outside of (6.3) the degree of instability is even and the equilibrium is 
stabilized by gyroscopic forces. The latter is easily proved by reviewing 
the characteristic equation which, if written in terms of the square of the 
unknown, is 

9 s+ (;:(Q #)s -+ "w 2) q' -;- q (:30 o4 + 0 4) $ IO o? (0 o? - 0 2): = 0 (6.4) 

where for simplicity the notation 

n 0 
6)- = o,- -i C$, '+ OZS (6.5) 

iIs: been introduced. 

The polynomial (6.4) satisfies the Hurwitz conditions,. since always 

(So, .+ 20') (30,4 + 04) - mo3 (wo? - d)-? > 0 (f-5.6) 

The discl,iminant 6 of the cubic eqUation 

y3 + 3hy -+ L!r = 0 

which is obtained from (6.4) by the change of variable 

(6.7) 

is nonpositive 4 
A = _ - oO' d(4~,‘- ,z):! < 0 

27 (6.9) 
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If 0 =./= 0, 4002 -&a# 0, and a02 

real roots. 
-@‘f& then (6.4) has three different 

Consequently, the characteristic equation has three pairs of 
different purely imaginary roots. 

For i~#O,ho~ *oaf 0, and oc2=os Equation (6.4) has along with two 
real negative roots, also a zero root, 
a multiple zero root. 

and the characteristic equation has 

If w=O, 
istic equation, 

then (6.4) has a triple root q1,2,a= -@02, and the character- 

plicity. 
respectively, a pair of Imaginary roots of the same multi- 

Finally, for 400~ --os= 0 Equation (6.4) has a multiple root ga#=--O~~, 
and the characterlstld‘equation a pair of imaginary multiple roots. 

It can be shown that when the roots of the characteristic equation are 
multi le, 
(3.167 

the elementary divisors of the characteristic matrix of the system 
In the present case remain linear. 

The author is indebted to A.Iu. Ishiinskii for review of the manuscript 

and useful remarks. 
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