ON THE GENERAL EQUATIONS
OF INERTIAL NAVIGATION

(0B OBSHCHIKE URAVNENIIAXH
INERTSIAL'NOI NAVIGATSII)

PMM Vol.28, W 2, 1964, pp.242-25T7

V. D. ANDREEV
{Moscow)

(Received February 2, 1963)

Derived and investigated are the equations of i1deal (unperturbed) and per-
turbed operation of a generalized system of inertial navigation which deter-
mines the coordinates of a moving object from the measurements of three
linear accelerometers and three angular velocity meters measuring absolute
angular velocity. The instruments are located along the axes of an ortho-
gonal trihedron, the origin of which coincldes with a certain point in the
moving object.

In contrast to [1 and 2], the orientation of the trihedron axes is arbi-
trary.

The equations of ideal operation take into account the non-central nature
of the Earth's gravitational field. The equatlons of perturbed operation
include instrument error effects.

Error equations are derived and investigated not only for small but also
for the finite values of the variables of the perturbed operating conditions.

The particular cases are the equations and the results of investigation
of the particular control systems considered in [1 to T7].

1. Let us introduce the right-handed orthogonal! systems of coordinates
0.en¢{ and 0,8n( . The coordinate system 0.gn{ 1s an inertlal system for
which Newton's laws of dynamics are valid by definition. The cholce of the
location of peint ¢, and orientation of the axes gn{ are not subject to
other conditions. The origin of the system (;8n{ colncides with the
Earth’'s center. The orientation of the axes of the 0;8n{ system is invari-
ent with respect to the inertial system. Without loss of generallty, theilr
orientation can be considered identical.

Let us introduce also the systems of coordinates 0Ogn{ and Oxyz with
the origin at a certain point of the moving object (not necessarily at
the center of mass). The orientation of the 0fn{ system of coordinates
coincides with the corresponding orientation of the 0,8n{, 0,§n{ systems
of coordinates. The orientation of the Oxys system is arbitrary.
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298 V.D. Andreev

Finally, let us introduce the system of coordinates 0,xyz , the origin
of which 18 at the Earth's center, while the orientation of the axes 1s
identical to those of the trihedron Oxyz

The problem which is to be solved by the inertial system is the determi-
nation of the Carteslan coordinates £, n, { of the point ¢ 1n the object
within the coordinate system 0,€n{ , and the parameters defining the orlen-
tation of the object relative to the gn{ axes.

Let along the edges of the (xyz trihedron, there be installed three
accelerometers and three sensors of the projection of the absolute angular
velocity of the (Oxys trihedron upon 1ts axes.

We will denote the accelerometer measurements by 7., n,, n,, the pro-
Jectlons of the absolute angular veloclty measurements by m,, m,, m,, and
introduce the vectors

n=n:X-+nYy+ nz, m=mex +myy+mz=wo (1.1)

wheré @ 1s the absolute angular velocity of the trihedron Oxyz , and X,
Yy, 8 are the unit vectors of the corresponding axes.

Let us define n , assuming unit accelerometer polnt masses located at
the point 0 .

If »r,; 1s the radius vector of the point (¢ 1n an inertlal system of
coordinates, then the condition for relative equilibrium of the sensing mass
of the accelerometer 1s of the form

d’rop/dt? = Frgy) + i (1.2)

where JF(r,,) 1s the geometric sum of the sensing mass attractlon forces due
to the combined multitude of the celestial bodles, while £ 1s the sum of
the forces acting on the sensing masses through their suspensions.

In an accelerometer the sensing mass 1s usually suspended elastically
[1 and 2]. The magnitude of the elastic deformation of the suspension is
proportional to tae force £ and is the output of the accelerometer*, There-
for , assuming the proportionallty coefficient unity, we have

n = d2rgy/dt? — F(rgy) (1.3)
Note that the differentiation in Formula (1.3) is carried out in the sys-
tem of coordinates 0z8n{ .
If » denotes the radius vector of the point (¢ relative to 0,, and
r,, 1s the radius vector of the point ¢, relative to (,, then by taking
into account that

Toga =T + o1 d2r01/dt2 = F(r()l) (1.4)

* Here the suspension is assumed tc be & spring while in some practilcal
accelerometers the elastic forces may also be different, e.g. electro-

magnetic.
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and by introducing the special designation g(») for the Earth attraction
force on & unit mass located at ¢ , we get

n = d?/d® —g(r) + Fi(0) — Fu(r) (1.5)

In (1.5) the P, (r) is determined now by the attraction fleld at the point
0 of all the celestial bodies with the exception of the Earth.

Let us consider, for the time being, that the object motion (point 0)
occurs at a small distance above the Earth's surface (compared with its
radius, for example). Then the difference

F, (0) — F, (v) (1.6)

of the attraction forces at points (0 and 0, becomes negligibly small even
for the nearest celestlal bodies including the Moon and the Sun. Therefore,

wilth great accuracy
n=dr/!d? — g(r) (1.7)

Since the system of coordinates 0,£n{ translates relative to 02816
the differentiation in the formula {1.7) can be considered carried out in
the 0,Eny system .

2. Let us construct the equations for ideal operation, 1.e. the equations
for unperturbed functionling of the lnertial system.

Projecting on the ¢,xyz axes

dr . d _ [dry dr’
S=rtoxr,  Sr=(F)Fex 4 (2.1)

where the local derlvatives denoted by dots are with respect to the 0y xyz
system of coordinates. W1lth the aid of (2.1) from (1.7), and by replacing
@ by m in accordance with {1.1), we get by integrating in the 0,xyz
system
! o t
_dizgln—-mx —3:—+g(r)]dt+%, r_—_g(—fl:'—-mxr)dt-izzr;)
3 .

With the aid of the computers the relationshps (2.2) permit determination
of the Cartesian coordinates x, y, 2 of the point ¢ in the 0y xyz coordi-
nate system fog the quantities n,, n,, n, ;3 m,, My, M, and the initial
values »°, %% , provided, of course, that g,{x,y,2), ¢,(x,y,2) and
g,(x,y,z) are known, which will be the case if, for example, the Earth's
gravitational field is central (more correctly, spherical),

In order to pass to the Cartesian coordinates £, n, { of the point ¢
in the system 0,En{ , 1t 1s necessary to model the equation

= g(g X m) dt + E° &%) (2.3)

0



300 V.D. Andreev

along with (2.2) which permits, for nm,, m,, m, and the mutual disposition
of the systems of coordinates 0,En{ and O,xyz at the initial time, the
determination of the direction cosines between the unit vectors §, n: €
and X, ¥, & and Equatlons

E=§&r (E%) (2.4)

which effect the passage from the coordinates x, ¥, 2 to the coordinates
€, n, ¢ In (2.3} and (2.4) and the sequel, the symbol (fn{)} placed near
the formula denotes cyclic interchange of the variables and the indices.

It is obvious that the orientation of an obJect in space 1is given by 1ts
position relative to the trihedron Oxyz which requires an additionsl
measurement elither of the position of the trihedron Oxyz relative to the
object, or the angular veloclty of rotation of the. set Oxyz relative to
the object and the solution of the equations similar to (2.3).

If the Earth's gravitational field 1is assumed spherical, 1.e.
r
gr)=— ——g(r) (2.5)

then Equations (2.2} and (2.3) are solved independently. In the oppcsite
case, the gravitational field can be given only in the Earth's coordinate
system or In a coordinate system whereln the motion of the Earth 1s known,
for example,in the 0,8n{ coordinate system. In this case the given func-
tions will be g (&, M, §, 1), g, (&, m, &, 1), and gy(E, M, £, 1) . In order to
determlne g¢g,, g, and g, 1t 1ls first required to obtaln the solution of
Equation {2.3), and then solve simultaneously (2.2) and (2.4).

It is understood that knowing the Cartesian coordinates €, n, { it 1is
possible to obtain any other ccordinates, in the general case curvililinear
and nonorthogonal coordinates x,, #,, %, which may be dependent on £, n,
{ and time ¢ 1if the surfaces of equal values of the coordinates wuy, kg,
#; will change thelr position relative to the trihedron ¢,En{ with time,
The latter will take place, fcr instance, if the coordinates ,, uy, x; are
rigidly attached to the Earth.

In order to pass to the coordilnates ,, x,, #; , it is obvlously neces-
sary to specify three relationships of the type

mi@7 uB §§%1, Ko, M3,y t) =0 (I =1, 2» 3) (2'6)

which in the whole performance region of the inertial system must satisfy

the usual conditions of unique correspondence of the £, n, { and x;, #ng,
#s coordinates, i.e. the determinants of the Jacobi functions &, %,, %
of €, n, ¢ and x;, ®x,, #z must be nonzero.

It 1s worth to note that the construction of the equations for ideal
performance in their integral form (the form in which they are simulated by
the computer of the inertial navigation system [2]} is not entirely unigue.
They may be constructed in several equlvalent but different forms.

For example, 1n place of Equation (2.2) one may take the equivalent equa-
tion
t ot

r=([fa—mx@+mxn+gma+ter+ o s b (2

[
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Equations (2.2) and (2.7) presuppose integration along those axes in
Oxyz (0,xyz),where n,, n,, n, and m,, m,, m, are measured, and obtaining
the Carteslian coordinates x, y, 2.

Another construction is essentially different. Utilizing (2.3}, n can
be projected on the axes of the set @¢,En{ with Integration carried out
along the axes of this set and then obtaining the Cartesian coordinates ¢,
n, { . One can project n along the axes of any other orthogonal system
0,8'n'¢’ (with the origin at the geocenter ¢, ) the motion of which is known
relative to (0,En{ , the axes of such system may be, for example, rigidly
attached to the Earth., Finally, one may project n along the normals to
the coordinate surfaces =, = const , carry out the integration along these
normals and obtain as the result of integration the coordinates w,, x,, %3 .

A possible intermediate method for constructing the egquations for ideal
performance is to carry out the first integration along one set of directions
{not necessarily coinciding with the directions of the n components measure-
ments), and the second integration along another set of directions.

Equations (2.3) can also be expressed in other forms, for example, by
introduction of Euler angles, the 0lding Rodrigues parameters or the Cayley -
Klein parameters [8 and 9].

All variations for constructing the equations of ideal performance differ
insignificantly in the number of reguired computer operations if one con=-
siders the complete equations for ideal performance, an arbitrary orientation
of the trihedron Oxyz , and an arbitrary motion of the object. The possi-
bilicy of simplifying the equations for ideal performance is dependent on the
cholce and the maintenance of & special orlentation of the (xyz trihedron,
on the imposition on the motion of the object of definite limitations, and
on the neglecting of certain terms in the equations for ideal performance,
the inclusion of which leads to the accuracy beyond that provided by the
inertial system.

The coordinate set Oxyz can be riglidly attached to the object. Then
the complete system of equations for ideal performance is utilized. The
solution of the system (2.3) at the same time also determines the orientation
of the object in space.

The coordinate set Oxyz may be fixed in space [2], for example, its
axes may be parallel to &n{ . Then the integration ylelds immediately the
coordlnates €, n, ¢ and Equations (2.3) fall out. Such orientation of
the set Oxyz canbe ensured by a stabilized platform.

If the axes of the set (xyz are parallel to the axes €', n’, ¢/, the
orientation of which in the system 0,8n{ dis a known function of time, then
the Carteslan coordinates £’'. n’, (¢’ are obtained by direct integration.

At the same time the position of the set (xyz relative to the axes of 0gn(
must repeat in time the given orientation of the system 0,£'n’(’ relative
to 0 &n{

The coordinate set (xyz can be orlented also with regard to the co-
ordinates x;, x,, #3; of the point ¢ of the object as determlned by the
inertial system 1itself. For example, one of its surfaces can be a tangent
surface to the area of constant value of some coordinate, for instance, x,,
then one axls of the set (Qxyz , such as (Ox , 1s normal to this surface. In
this case the integration along the axds ¢x will yleld immediately the
coordinate x;. If the coordinates =x,, x,, X3 are orthogonal, then it 1is
possible to locate the axes 0y and 0Or along the normals to the surfaces
M, = const and x, = const and determine w,,n; by integration. In the
case of nonorthogonal set of coordinates it 1s possible to pass to the non-
orthogonal trihedron Oxyz

Examples of the orlentaticn of an orthogonal set (xyz which account for
the present position of the object are: the realization of an tracking
Darboux trihedron on a sphere of radius p , concentric wlth the Earth, 1if
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the coordinates w«,, ny, %, are spherical coordinates (geocentric or geo=
desic), or a tracking trihedron on the surface h = const 1f the defining
coordinates are the latitude, longitude, and height h above sea level,

The simplest example of expedient transformation to a nonorthogonal tri-
hedron 1s the case when the defining coordinates are: the distance r from
the center of the Earth 0, and the angles x, and x, between » and the
axes (,& and 0O;n . In this case, having located the axis 0z along r,
the axes (Qx and 0Oy should be located in the planes 00, and 00,n .

It 1s clear that in this case the axes (x, 0y and ¢z are normal to the
surfaces x, = const , x, = const and r = const ; and the angle between
the axes (Ox and 0Oy 1s not a right angle and depends upon the coordinates
Ky, Mg

If the object moves along the surface »; = const , then the equations
for ldeal performance are simplified by the fact that the part related to
the definition of x, 1s eliminated so that no accelerometer along the nor-
mal to the surface x, = const should be needed. Analogous simplifications
are possible when the surface 1s not a coordinate but 1s given by the re-
lationship ol(nl, %2, ) = O . Example of such simplifled systems with
two accelerometers {or equivalent systems with two accelerometers) are the
control systems presented in [1 to 5].

Finally, if the object moves along the line g, (n,, %y, *3) = O , o,{uy,
Kz, %3 ) = O , then the second accelerometer may be removed from the system
with the remaining one belng oriented along the tangent of this line.

Of course, the enumerated simplifications are conditional on the impo-
sition of constraints upon the motion of the object. In particular, however,
the elimination of one or even two accelerometers 1s possible in the absence
of such constraints 1f one or two coordinates are determined not by the
inertial system but by means of other sources of Information. For example,
the distance to the Earth's center may be determined by means of a radio
altimeter [2].

We will note also that along with the omission of some negligible parts
in the complete equations for ideal performance, the simplification of these
equations may also be effected by forming part of the terms not as functions
of the present performance of the cobject's motion, but as functions of its
programed values, i1.e. as functlons of time.

The equatlons for ideal performance of the inertial system considered
above, were formed with the assumption that the motion occurs at such prox-
imity to the Earth's surface that in (1.5) the difference (1.6) can be neg-
lected. It 1s easy to see that this limiting assumption need not be made.

Let there be »n celestlal bodles, the attractlion of which should be
evaluated, takin: the difference (1.6) into account.

We will denote by pr, the radlus-vector of the center of mass for the
{-th celestial body relative to the Earth's center of mass 0,. Then the
radius-vector /¥ of the point (¢ relative to the center of the {-th body
is equal to

M=r—r 2.8)

If one considers that the masses of the considered celestial bodies and
their motions relative to the Earth are known (the object, obviously, does
not perturb the motion of the Earth or that of the celestial bodles), and
that thelr attraction filelds are central, then [10]

n@_nmmgmﬂ%_iil) 2.9

r—r; |3
i=1 l il

where m, 1s the mass of the i-th celestlal body, and vy a gravitational
constant.

Taking into account (2.9}, the first equation in (2.2} is replaced by
Equation
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4 n
dr dr T
O —\lp—mX —-+g(r + m-’r(—"'
§[ dt El P

o

; ﬂdz +& 4o

r—r
dt

The projections of p, on the aXxes of (,xyz 1in (2.16) ars determined by
the projections on the axes of 0,&n{ , which are known as functions of time,
and by Formulas (2.3)

The conslderation of noncentrality in the fields of attraction of the
considered celestial bodies does not introduce principal difficulties 1n the
construction of the equations for ideal performance but does make these equa-
tions substantially more unwieldy, since the determination of the attraction
fields requires introduction of n systems of coordinates each of which is
rigidly attached to the i-th celestial body. In this case, it becomes neces=-
sary that the motion of each celestlsl body about its center of mass with
respect to the system of coordinates 0,En{ (or 0,&n{) be known,

3. Let us derive the error equations, l.e. the equations describing the
perturbed operation of the inertial system when the initial conditions of
the equatlons for ldeal performance are given inaccurately and the elements
of the s&stem have instrument errors. The error equations determine the sta-
bllity of performance of the inertial system and the dependence of its accu~
racy upon the magnitude of errors in setting up the initial conditions and
upon the Instrument errors of the elements.

As the Instrument errors we will take the basic ones: Am and An [2].

It can be shown that any other errors can always be reduced to the equivalent
basic ones.

From (2.2), assuming now
r’ = r -+ dr, m = © -+ Am, n =n-+ An 3.1

we obtain ¢
ar '\'[n' —m’ x I g ()] dt +(£3£’_)°
t \ dt dt

(3.2)

Q0

Subtracting from (3.2) the equations for ideal performance (2.2) and

noting that m = w we obtain, using the notation {3.1), the integral error
equations

t
o= {[an— am B — (@ + am)x ZF +
0
+g @+ o) —g (] + G (3.3)

t
dr = \(%‘?;—- Am X r — (0 + Am) X 61‘) dt + 8r°
0

Differentiating in the same system of coordinates in which the integrals
are taken, l.e. in the (xyz system, we obtain the differential equation
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or" -+ 2 (w + Am) x 6r + (v -+ Am) x [(w + Am) x dr] +
+ (o + Am)x ér — g (r+ 08r) - g (r) = An — 2Am x r — Am’ x r —

— Am x (@ xr) — (0 -+ Am) x (Am x 1) (3.4)
with the inltlal conditions
ér (0) = 61r°
or' (0) == (8r)° -+ (dw° — Am®) x (r" -+ 6r°) (3.5)

For the given guantitles w, &m, 4n, r projected on the Oxyz axes and
the initial values Or°, 8w’ (6r)° , the equation (3.4) ylelds the ervors in
determination of the Cartesian coordinates x,y,zr Dby the inertial system.
Equation (3.4) 1is exact. If in 1t the products of the projectlions am and
8r are neglected, there results Equation

S+ 20x8r +oux{wxdr) o xdr—g+or)+gl)=
=An —2Am xr — Am' xr — Am x {» x 1) — o x (Am x r) (3.6)

with the initlal conditlions

or (0) == &r°, Or (0) = (6r) + (bw° — Am®) x r° (3.7)

For a8m = O, 1.e. when the perturbations are merely due to the accelero-
meter and the initial conditions errors, Equation (3.4) 1is equivalent to
(3.6).

In (3.6) w, r, Am, &r are given in the projections on the 0,xyz axes
and w 1s the abscolute angular veloclty of rotation for the Q,xyz trihcd-
ron. Therefore (3.6) can also be written as

aor , dr d A 9 0

e o= — N = —— (AN X 3.8
— T g ) —g(r+ 0r) = An — Am . — — 7 ( r) (3.8)
where ér,r, Axn, An are now determined by the prpjections on the axes of
the (,&n{ coordinate set. Note that the homogeneous equation (3.8) cor-
responds exactly not only to (3.6) but also to (3.4) where the products of
the Am and & projections are retained.

Let us turn to the second group of equations for the inertlal system per-~
formance, i.e. to Equations (2.3) and (2.4).

We have from {2.3)

O + (w4 Am) x 8 = & x Am &0 3.9
Or, with the same eliminations as in passing from (3.4} to 3.6}
8F +wx 88 =ExAm (G (3.10)

or finally, analogous to (3.8)
dag L Ex Am (En) (3.11)
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where as in (3.8) 8§, 0, 0f and Am are defined in the projections on the
0.8n¢ axes. The initial conditions for Equations (3.9), (3.10) and (3.11)
are obvious.

From {2.%) we have ég — 651’ ED) (312)

Denoting by 8r, the full error, and by &r, the error defined by the
second group of equations (3.9) and (3.12) or (3.10) and (3.12), we get

61‘1 = 61‘ "{" 6]‘2 (3.13)
where o1, = (8E-1) E + (dm-1) m + (8- 1) (3.14)
and §r 1s the solution of the error equations of the first group (3.4) or
(3.6).

In concluding the deviation of the error equations let us pass from the
vector equations (3.6), (3.10), (3.14%) and (3.13) to scalar ones. If the
varlation in the noncentricality of the Earth's gravitational fleld 1s neg-
lected and only the linear terms retained in the expansion of the difference

g(r)_g(r+§r), then
g —gto) =8 g =L Ibr —3r(r+or—n (.15

Projecting now (3.6) on the axes xyz and taking into account (3.15), we
get the first group of error equations in the form

(3.16)
dz" -+ (-§~ — @ — m}) Sz + (0, 0y — 0,) Oy —
S
— 20, 8y + (0, 0, + o) 82+ 20,87 — —=z (r+ or|—r) =
= Anx — 2 (Amyz' - Amzy.) - (Am.yz - A?n.z 5") — (Amyy + Am‘z Z) -
— Am, (0, y+o,2) -+ 22 (0, Am, + o, Am,) {xyz)
The initial conditions of this group of equations are

8z (0) = 8z°; (3.17)

8x" (0) = (82)° + (8w ,” — Am,”) 2° — (80,” — Am,")y° sy

Let us find the eguations for the projectlions on the axes xyz of bx,,

8y, bz, of the vector 8r, given by the relationships (3.10) and (3.14).

Introducing the table of direction cosines
z y z

t—— [0 a ) o
11 2 13
° 1 (3.18)
N | Koy | Qop | g3
L | ag"| gz | Oigx
and observing that Equations {2.3) are equivalent to three systems of scalar
differential equations [9]

a; + o0 — w0, =0 (i=1,2,3) 23 <o (3.19)
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we obtain in place of (3.10) (3.20)
dayy + oy 8oy — @00, = Amuoi, — Amyag (=123  as xw)

Introducing the notation 6,, ¢, and 8, for the quantities

By = — 0390015 — Gypdapg — @300
ey = (111(3(113 + azléu@;; + a315a33
0. = — an ba;; — Ay 80y, — aydag, 3.21)

and neglecting the squares of the variations of direction cosines ag, we get
from (3.19) and (3.20) the relationships

0. + 0,8, — wb, = Am, ) (3.22)
But 9,, 6, and 9, are, according to (3.21), the components of small

rotation @ along the axes xyz. Therefore, (3.22) can be written in the
form of Eguation ( a8

6+o0x60=Am (5 = Am) (3.23)
with the initial condition 8(0) = 8° determined by (3.21).

Now 1t is obvious that Ory = 6 x r, wherefrom

dz, = 0,2 — 0,y (xy2) (3.24)
The full error, according to {3.13), is
é.’L‘l = dz + (53«‘2 {xyz) (325)

where b&x, 6y and 6z are defined by {3.16), and &x,, by, and &z, are
given by (3.22) and (3.24).

If in computing the difference (3.15) one considers the variation in the
noncentrality of the Earth's gravitational field, then it 1s necessary to
retain the quadratic terms 1n the expanslon of the spherical part of the
gravitatlional field since they are of the same order of magnitude as the
linear part of the expansion for the correction of nonsphericity {at least
for the Earth's field,in any case},

Introducing the notation

g =——g() +e@ (3.26)
where
e(r)=c¢, (x,v, 2 xt+ g, (2, 9,2 y+ ¢, (zy 22

is a vector function of P characterizing the nonspherlcity of the attrac-
tion fleld, we get

r r

o 12r0r 68
g(n—g(r+ 5r)==-—~—,r—g(r)+g—f—9(r+ or) [15([r+6r1—r)_. 2xor ‘1_,

— (grad e,0r1 ) x — (grad eyérﬂ y — (grad g,0r)) z 3.27)

Since (3.27) contains not only &r but also &r,, then in this case the
first group of the error equations 1s not separated from the second group.
Similarly, the equations for ideal performence are not separated in consider-
ing the noncentrallity of the attraction fleld.
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It 1s easy to include in the first group of error equations the attraction
differences of other (other than Earth) celestial bodies at the Earth's cen-
ter and at the point (¢ of the present position of the object in accordance
with the equations for ideal performance (2.10).

In this case &r, = 8r,5, and the error equations of both groups are also
related.

4., Let us indicate now certain general properties of the error equations
for the investigated generalized control system of inertial navigation, and
also show how to obtaln from them the error equations for particular systems
considered in [1 to 5].

The error equations (3.16), (3.22), (3.24) and (3.25) permit a group of
transformations determined by the arbitrary rotation of the 0,xyz (oxyx)
trihedron in space. This property of the equations follows from the arbit-
rary orientation of the coordinate set (trihedron) Oxyz and the arbitrary
w . It can also be proved directly, analogous to the proof in [2]. There-
fore the analysls of the error equations for the inertial navigation system
for any orlentation of the set Oxyz (0,xys) can be carried out relative
to another set of coordinates (trihedron) suitably selected. (Analogously
as it was done in [2] relative to the rotation of the accompanying trihedron
in azimuth).

Such a trihedron can be, for example, 0,f¢n{ fixed in space. In this
case the error equations are obtained from (3.16), (3.22), (3.24) and (3.25)
if one assumes w = O. In place of (3.16) we obtain

88 + £ 8g— g (|r 4 dr|— 1) =
(En%)
= Ang— 2 (Am,t — Amgn’) — Am, L+ Amyg q (4.1)

which follows also from (3.8), and in place of (3.22), (3.24) and (3.25) we
get

92. = AmE’ 6&2 = GnC —0¢m, 6&1 = 6& + 6%2 (&%) (4-2)

In Equations (4.1) and (4.2) Ang, An,, Ang, Amg, Am,, Amg
are respectively, the projections of Aa and Am on the Zn{ axes . They
can be obtained from an,, An,, &n,, 4m,, Am,, Am, if a,,(t) are known.

Equations (4.1) and (3.8) permit an interesting analogy. They are analo-
gous to the variational equations of the motion of & particle of unit mass
in the Earth's field of attraction when the motlon of the point 1t perturbed
by the forces appearing on the right-hand side of Equations (4.1) and (3.8).
In particular, the equations (4.1) and (3.8) are analogous to the equations
of motion of a particle in a satellite cabin [11]. The indicated analogy
permits, in the latter case, the application to the analysis of the first
group of error equations,for inertial navigation of the well developed
methods of celestial mechanics.

If the attraction of celestlal bodies other than the Earth 1s also con-
sidered, then the corresponding error equation will be analogous to the per-
turbed motion of a particle in the field of attraction of n bodles.
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Equations (3.16), (3.22), (3.24) and (3.25) are the error egquations for
an arbitrary control system. They are valid, apparently, for the case when
the orlentation of the set (Oxyz 1s a given function of time, 1.e. does not
depend on the coordinates determined by the inertial éystem, as well as when
the orlentation of the trihedron is given as a function of coordinates de-
tetmined by the inertial system. It is worth noting that in the latter case
the position of the Oxys trihedron is perturbed by the errors of the co-
ordinate determination.

The homogeneous equations of the first group (3.16) are exact. They de-
scribe the perturbed operating conditions of the inertial system not only
for small but also for large perturbations.

Equations (3.22) and (3.24) of the second group are the equations for
small deviatlons, since in passing from (3.20)to (3.22), the squares of
8a,, {t) were dropped. In order to obtain Equations (3.22) and (3.2%) for
large perturbations it 1s necessary to utllize the theory of finite and not
small rotations [9] in transforming the exact equations (3.10) and {(3.20).

Note that the second group of error equations for the inertial systerm 1is
of the same form as was obtalned in [2], and for given aq,, {¢!) car be inte-
grated by quadratures, which follow from {(4.2).

Let us obtain from Equations (3.16) the equations of perturbed operation
for the particular inertlal navigation systems investigated in [1 to 5].

Assuming in (3.16) 0 = 0, = 0, = 0
63: = 6§"’ 6y ESS 6]1", 63 = 6&,” r = {3*, y = n. Z == g‘ {”{R)
and not that Y
e A LR (4.4)
therefore, within the accuracy of terms up to second order of magnitude
e+ 8r|—r =g 88 + ndn/ + §8L° (+.5)

we obtain Equations (4.14) in the paper [2] for the inertial system where
the integration takes place along the Jdirections fixed 1n absolute space.

Directing the axis (¢ of the set (xyz in the unperturbed state along
r , and noting that in this case

z=y=0, z=r7 (4.6)
and within an accuracy of terms up to second order of magnitude
dx=1B, 8y= —ra, 8z2=0r, jr+4+or|l—r=20z (4.7)

we cbtaln Equations (3.9) in [2] for the system with three accelerometers
located along the axes of the Darboux trihedron on the sphere surrounding
the Earth.
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The first two equations in {3.16) in this case become the small oscillation
equations for the Schuler pendulum [5 and 12], two-gyroscope vertical [4],
gyro horizon compass [ 3], and the system considered in [1] if in (4.5) one

tets 0z = ér =0 (4.8)

In [1 to 5], the small oscillation equations for systems near the position
of relative equllibrium are given. Equations (3.16) are exact. They immedi-
ately yield the equations for perturbed motion for arbitrary and not neces-
sarily small deviations.

Let, for example, the trihedron (Oxys in the unperturbed positlion be the
Darboux trihedron on a sphere [1 to 5] surrounding the Earth. Let us denote
it by Oxy,y,2, retaining the notation xyr for the perturbed position. Let
the perturbed position of the set xyg relative to the unperturbed be
characterized by two angles * g and B according to the direction cosines
table

z y z

Z, cos f3 0 sin 8 (4.9)
Yo sinasinB  cosa - sinacosf )
) —cosasinf  sina €os ¢ cos B3

The projections of the absolute angular velocity of the set (xyr upon
its axes are expressed by means of the projections @, @y y O, of the abso~-
lute angular velocity of the set ()xoyoso on the axes Xx,¥,2, and the angles
a and g as follows:

0y = 0, c0s B + o, sinasinB — o, cosasinB + a cosf
©, = ®,c05a -+ @, sina + B (4.10)
W, = W, sin § — o, sin acos B - v, cos acos B -+ asin B
For the system with two accelerometers and the motion of the point ¢ on
a sphere of constant radius r 1t follows from {4.9) that
dz = —rcosasinB, Oy =rsina, 8z =r(cosacosf —1) (4&11)

Substituting (4.10) and {4.11) into the first two equations in (3.16) we
obtain after obvious groupings and simplifications **

8" 4+ a?sin 3 cos B + 2u (0, sinBcos B — (4.12)
— w,, sin @ cos®* § + w,, cos a cos® B) + o, (cos o — cos B) +
+ @, sina + o, sinasinf + (0,* — ®,? cos a cos B — »,°) sin B cos a +
+ g7 (cos B — cos a) sin 8 — ©,2sin? @ sin B cos B -
+ o, 0y, (sin®* 3 — cos® B) sina +
+ @y, @, (cos® B cos a — cos B — sin® B cos a) 4~
+ @y 0;, (2cosacosP —1)sinasinf =0

* The third rotation is unessential. It can be referred to the position
of the x,}%, 8et.

** The equations are homogeneous,



310 V.D. Andreev

@ cos B — 2a' B sin B + 28" (— o, sin B + o, sin a cos B — (4.12)
~ O, €08 & €08 B) + o (cos B — cos @) + ©, sinasinf — oot
— @, €08 0.5in B + (0 — 02 — 0,2 (1 — cos a cos B) —
— ©,% 08 0, ¢0s B) 5in & — W, Oy, c0s a sin } — @, o, sin asin B +
+ 0y, 0, (Sinucos B —cos®acosB+cosa) =0, o2=g/r
Equations (4.10) coincide exactly with the equations of the Schuler pendu-
lum [ 5 and 12] the suspension point of which moves on the sphere of radius r.
Indeed, the pendulum equations, as projected on the axes xyz, are of the
form
H 4+ oH, —e,H,=—1IF, H + o, H —oH =1F, (413)

For the Schuler pendulum [5 and 12], the projections of angular momentum
are

H, = mlro,, H,=milro,, H,=0 (4.14)
The components of R on the x,y,z, are
Fp = — mr (o, + 0y0,), Fy,, = mr{o, — o, 0,)
F, = mr{o}2+ o} —mg (4.15)

The substitution of {4.14), (4.15) and {(4.10} into (4.13) gives immedi-
ately Equations (%.12}. Equations {4.12) are also the eguations of perturbad
motion of systems [1, 3 and 431.

For constant @, @y, ®;  Bgustions (4.12) possess & first integral, In

order to obtain 1t, 1t is sufficient to multiply the first equation in {(4.12)
by 8°, the second equation by a*cosg and to add them. Integratlon of the

sum ylelds
V == (a cos B)2 + B'?2— 2m,%cos a cos B -+
e o, ?cos? @ cos? B+ wxf (sin? B+ 2 cos acos B) +
—+ 0,2 (sin® o cos® B + 2 cos o cos B) — me’my‘ sin a sin Beos B+ {4.16)
+ 20, w, (cos asin B cos B— sinB) -+
- 203%&3% (sin o cos B — sin a cos a cos? B} = const

The Liapunov stability condition for the solution {4.12) follows from

{4,16) as
Of — 02 — 0f —02>0 (4.47)

It was obtained earlier in [6 and 7] from consideration of the eguations
reducible to (%.12).

Condition {#.17) is a sufficlent condition, The papers [6 and 13] show
that condition {4.17) can be considered as a necessary stabllity condition
1f fully dissipative forces are assumed in the system., In thls connection,
it is necessary to note that disslpative forces 1n inertial systems lead to
the occurence of velocity deviations, and the systems of inertial navigation
in the absence of velocity correction, tend to be desligned so as to avoild
dissipation. Therefore, srbitrary introduction of dissipative forces into
the system requires great care in the investigation of stabillty.

In order to obtain the equations for perturbed performance in & system
with two accelerometers and lsrge deviations for r = r{t} when r 1s de-
termined from auxiliary sources not connected with the operation of the
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inertial system, the r should be considered a given function of time in
(4.11). If r 1is computed as a function of two coordinates determined by
the inertial system, then in writing the egquations of perturbed performance
the variation of this function should be taken [2].

In order to obtain the equations for perturbed performance ror large
deviations of the system [ 2] with the variables g, 8 and &r , it 1is neces-
sary in (3.16) to substitute

8z = — (r -+ 8r) cosa sin B, Oy = (r 4 8r)sina (4.18)

8z = (r + 8r) (cos acosB —1) + &r
in place of (4.11).

5. Let us investligate the stability of the inertial system performance
for the case when the unperturbed (z-axis of the set (xyz 1s directed
along r , and w,, w,, w, and r are constant. From (3.16)

lr 4+ 8r| —r = 6z + o (82) (5.1)
Retaining now on the right-hand side of (5.1) only 8z , we note that
Eguations {(3.16) become linear with constant coefficients, the character-
istic equation of which is a cubic with respect to the square of the unknown
g =p°
¢ + 2¢% (0,2 + 0,2 + 0,2) + ¢ [— 30 + 304 (0.2 +
+ mv2 - 2(!):2) '+' (('):m2 + my2 -+ (012)2] —
— 0 (0 — @ — 02 — o) 208 + o + 0,2 — 20,%) =0 (5.2)
For stability (non asymptotic) Equation {5.2) must have, as is known,
negative or zero roots, and to multiply roots of the characteristic equation

of the system (3.16) should correspond linear, elementary divisors of the
characteristic matrix.

In order to investigate the stability of the system (3.16), in the present
case, one can utilize the fact that 1t can be considered as describing the
motion of a particle of unit mass under the action of potential and gyro-
scopic forces,

The expression for the potential function can be written
U=—7l(of — 02 — 0,%) 322 + (0 — 0,2 — 0,?) 0y —
— (2002 + 02 4+ 0,2\ 622 4 20,0 028y + (5.3)
+ 20, 0, 828z 4 20, o, dydz)
The following expressions can be considered as gyroscople forces:
20,0y — 20,82 (w2 (5.4)

since the matrix of coefflcients of these forces is antisymmetric [14].
The system (3.16) has in this case the energy integral
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8r? + 8y? 4~ 8z2 — 2U = const (5.5)

which can be obtalned directly if Equatlons (3.16) are added, multiplied
respectively by éx°, &y°, 82°, and integrated

‘”: If the gyroscopic forces (5.4) are rejected
then there wlll remain only the potential forces.
For stabllity of equilibrium under the action of
only potentlal forces, the potential function
must have a maximum at the equilibrium point.
Since the potential function (5.3) i a quadratic
form, the conditions for a maximum are the Syl-
vester conditlions for positive-definiteness of
of a gquadratic form. In the present case they

are the lnequalilties
of — 0 — 02— 02 >0, 208 —202+ 0+ 0<0 (5.6)

In Fig. 1 ° w,® o+ w,z, the straight lines 1 and 2 corresponding to
the equations w,® — w,® — 0% =0 and 2w,? + 0° — 24,° = O are plotted.
The figure shows that the reglons defined by (5.0} do not intersect, an.
therefore, the potential functlon has no maximum.

0oy

Since 1n the present case the potentlal functlon is homogeneocus of zecend
degree then, according to the known theorem of Liapunov [15], the instabllity
follows from the absence of ‘the maximum without the necessity of consldering
the terms of higher orders.

Let us return to the gyroscopic forces (5.4).

In the regions (1) and (3) {see Filg. 1) where the degrec¢ of Instabllity *
of the conservative system 1s
Thomson-Talt theorem [ 16], cannct stabilize the equilibrium.

odd, the gyrescople forceg, according to the

In the region (2), where the degree cf instability is even, the pocsibi-
1ity of stabilizatlon by gyroscopic forces remains in principle. Thils stabil-
lization, as 1s known [15], has a temporary character and is destroyed by
the forces of full dissipation.

The stabllization by gyroscopic forces resultvs 1f, for example,
ol +te =0 0,2 = e? (5.7)
where ¢® 1s a sufficlently small quantity.

1t can be easily shown that the polynomial (5.2) satisfies in this case
the Hurwitz conditions. The discriminant & of the cublc equation obtalned
from {5.2) by substitution of the varlable

v=q-+ @S+ ) (5.8)

* The number of negative stability coefficients of Poinecaré [15].
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is negative
A=~ mome”- 930 (5.9

All roots of the characteristic equatlion are therefore simple and purely
imaginary.

6. In conclusion, let us investigate the stability of a system with three
accelerometers when the orlentation of the set oxyz 1s arbitrary, and |p}
for g(r) is given, in addition, from a source outside the inertial system,

In this case it is necessary to make the following assumption in the error
equations (3.1€)

( v +8r| —r =0 (6.1)
and the error in ]x‘{ should be referred to the right-hand side parts in
(3.16}.

It follows from (3.16), (3.8) and (4.1) that the homogeneous error equa-

tions become . g .
08" - Tég =0 Grl) (6.2)
From (6.2) it follows that for r = const when w,® = g/r 1is constant,
the perturbed motion of the system is stable for any w,(t), w,{£), w,{(¢).

In this case for given q,,{(t) the solution of (3.16) follows immediately
from (6.2).

For constant w,, w, the stability can be dgtected also without re-
ference to equations (3 8) and (4. 1).

In the present case the condition for the maximum of the potential function
i1s reduced to one inequality

2 2 .
0" — @, ®

S 9,20 (6.3)

Qutside of (6.3) the degree of instability is even and the equilibrium is
stabilized by gyroscopic forces. The latter 1s easily proved by reviewing
the characteristic equation which, if written in terms of the square of the
unknown, is

P4 Goot+ 209 ¢ ¢ (Gugt + 0% F oty —0)?=0 (6.4)
where for simpliclty the notation

2 2Ll @l (6.5)

® R

= @
nac been introduced.
The polynomial (6.4) satisfies the Huswitz conditions, since always

(Bwg® + 203 Bopt -+ 0f) — 0 (0 — ©Y)* >0 (6.6)

The discriminant A of the cubic equation

3 4 30y - 2e =0 (6.7)
which is obtained from {6.%) by the change of variable
)w‘y - 2w- .
¥ =g+ B (6.8)
1s nonpositive 4
A== — > % 08 (40t — 022 < 0 6.9)
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If © %0, 40¢® —©?3= 0,and 0e® —0?50, then (6.4) has three different
real roots. Consequently, the characteristic equation has three palirs of
different purely imaginary roots.

For ®:£0, 400 —0e*s= 0, and we>=@? Equation (6.4) has along with two
real negative roots, also a zero root, and the characteristic equation has
a multiple zero root.

If w = 0, then (6.4) has a triple root ¢1,2,3= —®¢?, and the character-
1§§1§ equatlon, respectively, a pair of imaginary roots of the same multi-
plicity.

Finally, for 4@¢® —@3= (0 FEquation (6.4} has a multiple root g¢s,5=—6?
and the characteristic equation a palr of imaginary multiple roots.

It can be shown that when the roots of the characteristic equatlon are
multiple, the elementary divisors of the characteristic matrix of the system
(3.16) in the present case remain llnear.

The author 1s indebted to A.Iu. Ishliinskil for review of the manuscript
and useful remarks.
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