ON THE GENERAL EQUATIONS
 OF INERTIAL NAVIGATION

IMENTALAL'NOI MAVIGATBII)

PMM Vol.28, Ne 2, 1964, pp.242-257

V. D. ANDREEV
(Moscow)
(Received February 2, 1963)

Derived and investigated are the equations of ideal (unperturbed) and perturbed operation of a generalized system of inertial navigation which determines the coordinates of a moving object from the measurements of three linear accelerometers and three angular velocity meters measuring absolute angular velocity. The instruments are located along the axes of an orthogonal trihedron, the origin of which coincides with a certain point in the moving object.

In contrast to [1 and 2], the orientation of the trinedron axes is arbitrary.

The equations of ideal operation take into account the non-central nature of the Earth's gravitational field. The equations of perturbed operation include instrument error effects.

Error equations are derived and investigated not only for small but also for the finite values of the variables of the perturbed operating conditions.

The particular cases are the equations and the results of investigation of the particular control systems considered in [1 to 7].

1. Let us introduce the right-handed orthogonal systems of coordinates $O_{2} \xi n 6$ and $O_{1} \xi \eta 6$. The coordinate system $O_{2} 576$ is an inertial system for which Newton's laws of dynamics are valid by definition. The choice of the location of point O_{z} and orientation of the axes $\xi \eta \zeta$ are not subject to other conditions. The origin of the system $O_{1} \xi \eta \zeta$ coincides with the Earth's center. The orientation of the axes of the $\left.O_{1} \xi_{\eta}\right\rangle$ system is invarient with respect to the inertial system. Without loss of generality, their orientation can be considered identical.

Let us introduce also the systems of coordinates 0 n $\boldsymbol{n} 5$ and $0 x y z$ with the origin at a certain point of the moving object (not necessarily at the center of mass). The orientation of the $05 \eta 6$ system of coordinates coincides with the corresponding orientation of the $0_{2} 576, O_{1} 576$ systems of coordinates. The orientation of the $0 x y z$ system is arbitrary.

Finally, let us introduce the system of coordinates $O_{1} x y z$, the origin of which is at the Earth's center, while the orientation of the axes is identical to those of the trinedron oxyz .

The problem which is to be solved by the inertial system is the determination of the Cartesian coordinates ξ, η, ζ of the point 0 in the object within the coordinate system $O_{1} 5 \eta 6$, and the parameters defining the orientation of the object relative to the gnc axes.

Let along the edges of the oxyz trithedron, there be installed three accelerometers and three sensors of the projection of the absolute angular velocity of the oxys trihedron upon its axes.

We will denote the accelerometer measurements by n_{x}, n_{y}, n_{x}, the projections of the absolute angular velocity measurements by m_{x}, m_{y}, m_{z}, and introduce the vectors

$$
\begin{equation*}
\mathbf{n}=n_{x} \mathbf{x}+n_{y} \mathbf{y}+n_{\mathbf{z}} \mathbf{z}, \quad m=m_{x} \mathbf{x}+m_{y} \mathbf{y}+m_{z} \mathbf{z}=\boldsymbol{\omega} \tag{1.1}
\end{equation*}
$$

where is the absolute angular velocity of the trihedron $0 x y z$, and \boldsymbol{x}, J, s are the unit vectors of the corresponding axes.

Let us define n, assuming unit accelerometer point masses located at the point 0 .

If r_{02} is the radius vector of the point 0 in an inertial system of coordinates, then the condition for relative equilibrium of the sensing mass of the accelerometer is of the form

$$
\begin{equation*}
d^{2} \mathbf{r}_{02} / d t^{2}=\mathbf{F}\left(\mathbf{r}_{02}\right)+\mathbf{f} \tag{1.2}
\end{equation*}
$$

where $\boldsymbol{P}\left(\boldsymbol{r}_{02}\right)$ is the geometric sum of the sensing mass attraction forces due to the combined multitude of the celestial bodies, while f is the sum of the forces acting on the sensing masses through their suspensions.

In an accelerometer the sensing mass is usually suspended elastically [1 and 2]. The magnitude of the elastic deformation of the suspension is proportional to the force \boldsymbol{f} and is the output of the accelerometer*. Therefor, assuming the proportionality coefficient unity, we have

$$
\begin{equation*}
\mathbf{n}=d^{2} \mathbf{r}_{02} / d t^{2}-\mathbf{F}\left(\mathbf{r}_{v 2}\right) \tag{1.3}
\end{equation*}
$$

Note that the differentiation in Formula (1.3) is carried out in the system of coordinates $\mathrm{O}_{2} \mathrm{gnc}$.

If r denotes the radius vector of the point O relative to O_{1}, and r_{01} is the radius vector of the point O_{2} relative to O_{3}, then by taking into account that

$$
\begin{equation*}
\mathbf{r}_{02}=\mathbf{r}+\mathbf{r}_{01}, \quad d^{2} \mathbf{r}_{01} / d t^{2}=\mathbf{F}\left(\mathbf{r}_{01}\right) \tag{1.4}
\end{equation*}
$$

[^0]and by introducing the special designation $g(s)$ for the Earth attraction force on a unit mass located at 0 , we get
\[

$$
\begin{equation*}
\mathbf{n}=d^{2} \mathbf{r} / d t^{2}-\mathbf{g}(\mathbf{r})+\mathbf{F}_{1}(0)-\mathbf{F}_{1}(\mathbf{r}) \tag{1.5}
\end{equation*}
$$

\]

In (1.5) the $F_{1}(x)$ is determined now by the attraction field at the point 0 of all the celestial bodies with the exception of the Earth.

Let us consider, for the time being, that the object motion (point 0) occurs at a small distance above the Earth's surface (compared with its radius, for example). Then the difference

$$
\begin{equation*}
F_{1}(0)-F_{1}(r) \tag{1.6}
\end{equation*}
$$

of the attraction forces at points 0 and O_{1} becomes negligibly small even for the nearest celestia. bodies including the Moon and the Sun. Therefore, with great zccuracy

$$
\begin{equation*}
\mathbf{n}=d^{2} \mathbf{r} t d t^{2}-\mathbf{g}(\mathbf{r}) \tag{1.7}
\end{equation*}
$$

Since the system of coordinates $O_{1} \xi \pi /$ translates relative to $O_{2} \xi \pi \xi$, the differentiation in the formula (1.7) can be considered carried out in the $O_{1} \xi \eta_{0}^{*}$ system.
2. Let us construct the equations for ideal operation, 1.e. the equations for unperturbed functioning of the inertial system.

Projecting on the $O_{1} x y z$ axes

$$
\begin{equation*}
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{*}+\omega \times \mathbf{r}, \quad \frac{d^{2} \mathbf{r}}{d t^{2}}=\left(\frac{d \mathbf{r}}{d t}\right)^{\cdot}+\omega \times \frac{d \mathbf{r}}{d t} \tag{2.1}
\end{equation*}
$$

where the local derivatives denoted by dots are with respect to the $0_{1} x y z$ system of coordinates. With the aid of (2.1) from (1.7), and by replacing w by m in accordance with (1.1), we get by integrating in the $0_{1} x y z$ system
$\frac{d \mathbf{r}}{d t}=\int_{0}^{t}\left[\mathbf{n}-\mathbf{m} \times \frac{d \mathbf{r}}{d t}+\mathbf{g}(\mathbf{r})\right] d t+\frac{d \mathbf{r}^{\circ}}{d t}, \quad \mathbf{r}=\int_{0}^{t}\left(\frac{d \mathbf{r}}{d t}-\mathbf{m} \times \mathbf{r}\right) d t+\mathbf{r}_{(2.2)}^{0}$
With the ald of the computers the relationshps (2.2) permit determination of the Cartesian coordinates x, y, z of the point 0 in the $o_{1} x y z$ coordinate system for the quantities $n_{x}, n_{y}, n_{z} ; m_{x}, m_{y}, m_{z}$ and the initial values r°, $\frac{d^{2}}{d t}$, provided, of course, that $g_{x}(x, y, z), \sigma_{y}(x, y, z)$ and $g_{z}(x, y, z)$ are known, which will be the case if, for example, the Earth's gravitational field is central (more correctly, spherical).

In order to pass to the Cartesian coordinates ξ, η, ζ of the point 0 in the system $0_{2} 576$, it is necessary to model the equation

$$
\begin{equation*}
\xi=\int_{0}^{t}(\xi \times \mathrm{m}) d t+\xi_{0}^{0} \tag{2.3}
\end{equation*}
$$

along with (2.2) which permite, for m_{x}, m_{y}, m_{z} and the mutual disposition of the systems of coordinates $0_{1} 5 n 6$ and $O_{1} x y z$ at the initial time, the determination of the direction cosines between the unit vectors $\boldsymbol{\xi}, \boldsymbol{M}, \boldsymbol{G}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and Equations

$$
\begin{equation*}
\xi=\xi \cdot \mathbf{r} \quad(\xi n \zeta) \tag{2.4}
\end{equation*}
$$

Which effect the passage from the coordinates x, y, z to the coordinates $5,7,6$ In (2.3) and (2.4) and the sequel, the symbol (9n6) placed near the formula denotes cycilc interchange of the variables and the indices.

It is obvious that the orientation of an object in space is given by its position relative to the trihedron $O_{y} z z$ which requires an additional measurement either of the position of the trihedron oxyz relative to the object, or the angular velocity of rotation of the set oxyz relative to the object and the solution of the equations similar to (2.3).

If the Earth's gravitational field is assumed spherical, i.e.

$$
\begin{equation*}
\mathbf{g}(\mathbf{r})=-\frac{\mathbf{r}}{r} g(r) \tag{2.5}
\end{equation*}
$$

then Equations (2.2) and (2.3) are solved independently. In the opposite case, the gravitational field can be given only in the Earth's coordinate system or in a coordinate system wherein the motion of the Earth is known, for example, in the $O_{2} 5 \eta \delta$ coordinate system. In this case the given functions will be $g_{\xi}(\xi, \eta, \zeta, t), g_{\eta}(\xi, \eta, \xi, t)$, and $g_{\zeta}(\xi, \eta, \zeta, t)$. In order to determine $\boldsymbol{g}_{x}, g_{y}$ and g_{z} it is first required to obtain the solution of Equation (2.3), and then solve simultaneously (2.2) and (2.4).

It is understood that knowing the Cartesian coordinates ξ, η, 6 it is possible to obtain any other ccordinates, in the general case curvilinear and nonorthogonal coordinates x_{1}, x_{2}, x_{3}, which may be dependent on ξ, n, 6 and time t if the surfaces of equal values of the coordinates x_{1}, x_{2}, $*_{3}$ will change their position relative to the trinedron $\left.o_{1} 5 n\right\}$ with time. The latter will take place, for instance, if the coordinates x_{1}, x_{2}, x_{3} are rigidly attached to the Earth.

In order to pass to the coordinates x_{1}, x_{2}, x_{3}, it is obviously necessary to specify three relationships of the type

$$
\begin{equation*}
\Phi_{i}\left(\xi, \eta, \zeta ; x_{1}, x_{2}, \varkappa_{3}, t\right)=0 \quad(i=1,2,3) \tag{2.6}
\end{equation*}
$$

which in the whole performance region of the inertial system must satisfy the usual conditions of unique correspondence of the $\overline{5}, \eta_{,} 6$ and x_{1}, x_{2},
 of ξ, η, ζ and x_{1}, x_{2}, x_{3} must be nonzero.

It is worth to note that the construction of the equations for ideal performance in their integral form (the form in which they are simulated by the computer of the inertial navigation system [2]) is not entirely unique. They may be constructed in several equivalent but different forms.

For example, in place of Equation (2.2) one may take the equivalent equation

$$
\begin{equation*}
\mathbf{r}=\int_{0}^{t}\left[\int_{0}^{t}\left(\mathbf{n}-\mathbf{m} \times\left(\mathbf{r}^{\circ}+\mathbf{m} \times \mathbf{r}\right)+\mathbf{g}(\mathbf{r})\right) d t+(\mathbf{r})^{\circ}+\omega^{0} \times \mathbf{r}^{0}\right] d t+\mathbf{r}^{0} \tag{9.7}
\end{equation*}
$$

Equations (2.2) and (2.7) presuppose integration along those axes in $0 x y z\left(0_{1} x y z\right)$, where n_{x}, n_{y}, n_{z} and m_{x}, m_{y}, m_{z} are measured, and obtaining the Cartesian coordinates x, y, z.

Another construction is essentially different. Utilizing (2.3), a can be projected on the axes of the set $0_{2} \overline{5} \eta$ with integration carried out along the axes of this set and then obtaining the Cartesian coordinates ξ, η, ζ; One can project n along the axes of any other orthogonal system $0_{1} \xi^{\prime} \eta^{\prime} \sigma^{\prime}$ (with the origin at the geocenter O_{1}) the motion of which is known relative to $0_{2} 5 \eta \zeta$, the axes of such system may be, for example, rigidly attached to the darth. Finally, one may project n along the normals to the coordinate surfaces $x_{1}=$ const, carry out the integration along these normals and obtain as the result of integration the coordinates x_{1}, x_{2}, x_{3}.

A possible intermediate method for constructing the equations for ideal performance is to carry out the first integration along one set of directions (not necessarily coinciding with the directions of the n components measurements), and the second integration along another set of directions.

Equations (2.3) can also be expressed in other forms, for example, by introduction of Euler angles, the olding Rodrigues parameters or the Cayley Klein parameters [8 and 9].

All variations for constructing the equations of ideal performance differ insignificantly in the number of required computer operations if one considers the complete equations for ideal performance, an arbitrary orientation of the trinedron $0 x y z$, and an arbitrary motion of the object. The possibillity of simplifying the equations for ideal performance is dependent on the chofce and the maintenance of a special orientation of the oxyz trinedron, on the imposition on the motion of the object of definite limitations, and on the neglecting of certain terms in the equations for ideal performance, the incIusion of which leads to the accuracy beyond that provided by the inertial system.

The coordinate set $0 x y z$ can be rigidly attached to the object. Then the complete system of equations for ideal performance is utilized. The solution of the system (2.3) at the same time also determines the orientation of the object in space.

The coordinate set oxyz may be fixed in space [2], for example, its axes may be parallel to 5η. Then the integration yields immediately the coordinates $5, \eta, 6$ and Equations (2.3) fall out. Such orientation of the set $0 x y z$ can be ensured by a stabilized platform.

If the axes of the set $0 x y z$ are parallel to the axes $\xi^{\prime}, \eta^{\prime}, \xi^{\prime}$, the orientation of which in the syster 0,576 is a known function of time, then the Cartesian coordinates $\xi^{\prime}, \eta^{\prime}, \zeta^{\prime}$ are obtained by direct integration. At the same time the position of the set cxyz relative to the axes of $05 \pi \zeta$ must repeat in time the given orientation of the system $0_{1} \xi^{\prime} \eta^{\prime} \sigma^{\prime}$ relative to $O_{2} 5 n 6$.

The coordinate set oxyz can be oriented alsowith regard to the coordinates x_{1}, x_{2}, x_{3} of the point 0 of the object as determined by the inertial system itself. For example, one of its surfaces can be a tangent surface to the area or constant value of some coordinate, for instance, κ_{1}, then one axis of the set $0 x y z$, such as $0 x$, is normal to this surface. In this case the integration along the axis $0 x$ will yield immediately the coordinate x_{1}. If the coordinates x_{1}, x_{2}, x_{3} are orthogonal, then it is possible to locate the axes oy and $0 z$ along the normals to the surfaces $x_{2}=$ const and $x_{3}=$ const and determine x_{2}, x_{3} by integration. In the case of nonorthogonal set of coordinates it is possible to pass to the nonorthogonal trihedron oxyz.

Examples of the orlentation of an orthogonal set oxyz which account for the present position of the object are: the realization of an tracking Darboux trishedron on a sphere of radius r, concentric with the Earth, if
the coordinates x_{1}, x_{2}, x_{3} are spherical coordinates (geocentric or geodesic), or a tracking trihedron on the surface $h=$ const if the defining coordinates are the latitude, longitude, and height h above sea level.

The simplest example of expedient transformation to a nonorthogonal trihedron is the case when the defining coordinates are: the distance r from the center of the Earth O_{1} and the angles x_{2} and x_{2} between r and the axes $O_{1} \xi$ and $O_{1} \eta$. In this case, having located the axis O_{z} along r, the axes $0 x$ and $0 y$ should be located in the planes $00_{1} 5$ and $00_{1} \eta$. It is clear that in this case the axes $0 x, 0 y$ and $o z$ are normal to the surfaces $x_{1}=$ const, $x_{2}=$ const and $r=$ const, and the angle between the axes $O x$ and $O y$ is not a right angle and depends upon the coordinates x_{1}, x_{2}.

If the object moves along the surface $x_{1}=$ const, then the equations for ideal performance are simplified by the fact that the part related to the definition of x_{1} is eliminated so that no accelerometer along the normal to the surface $x_{1}=$ const should be needed. Analogous simplifications are possible when the surface is not a coordinate but is given by the relationship $0_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$. Example of such simplified systems with two accelerometers (or equivalent systems with two accelerometers) are the control systems presented in [1 to 5].

Finally, if the object moves along the line $\sigma_{1}\left(x_{1}, x_{2}, x_{3}\right)=0, \sigma_{2}\left(x_{1}\right.$, $\left.x_{2}, x_{3}\right)=0$, then the second accelerometer may be removed from the system with the remaining one being oriented along the tangent of this line.

Of course, the enumerated simplifications are conditional on the imposition of constraints upon the motion of the object. In particular, however, the elimination of one or even two accelerometers is possible in the absence of such constraints if one or two coordinates are determined not by the inertial system but by means of other sources of information. For example, the distance to the Earth's center may be determined by means of a radio altimeter [2].

We will note also that along with the omission of some negligible parts in the complete equations for ideal performance, the simplification of these equations may also be effected by forming part of the terms not as functions of the present performance of the object's motion, but as functions of its programed values, l.e. as functiors of time.

The equations for ideal performance of the inertial system considered above, were formed with the assumption that the motion occurs at such proximity to the Earth's surface that in (1.5) the difference (1.6) can be neglected. It is easy to see that this limiting assumption need not be made.

Let there be n celestial bodies, the attraction of which should be evaluated, takins the difference (1.6) into account.

We will denote by r_{1} the radius-vector of the center of mass for the t-th celestial body relative to the Earth's center of mass O_{1}. Then the radius-vector $r_{1}^{(1)}$ of the point 0 relative to the center of the t-th body is equal to

$$
\begin{equation*}
\mathbf{r}_{i}^{(1)}=\mathbf{r}-\mathbf{r}_{i} \tag{2.8}
\end{equation*}
$$

If one considers that the masses of the considered celestial bodies and their motions relative to the Earth are known (the object, obviously, does not perturb the motion of the Earth or that of the celestial bodies), and that their attraction fields are central, then [10]

$$
\begin{equation*}
\mathbf{F}_{1}(0)-\mathbf{F}_{1}(\mathbf{r})=\sum_{i=1}^{n} m_{i} r\left(\frac{\mathbf{r}_{i}}{r_{i}^{3}}-\frac{\mathbf{r}-\mathbf{r}_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{3}}\right) \tag{2.9}
\end{equation*}
$$

where m_{1} is the mass of the $i-t h$ celestial body, and y a gravitational constant.

Taking into account (2.9), the first equation in (2.2) is replaced by Equation

$$
\begin{equation*}
\frac{d \mathbf{r}}{d t}=\int_{0}^{t}\left[\mathbf{n}-\mathbf{m} \times \frac{d \mathbf{r}}{d t}+\mathbf{g}(\mathbf{r})+\sum_{i=1}^{n} m_{i} r\left(\frac{\mathbf{r}_{i}}{r_{i}^{3}}-\frac{\mathbf{r}-\mathbf{r}_{\boldsymbol{i}}}{\left|\mathbf{r}-\mathbf{r}_{\mathbf{i}}\right|^{3}}\right)\right] d t+\frac{d \mathbf{r}^{0}}{d t} \tag{2.10}
\end{equation*}
$$

The projections of r_{1} on the axes of $0_{1} x y z$ in (2.16) are determined by the projections on the axes of $\mathrm{O}_{1} 5 \mathrm{M} \delta$, which are known as functions of time, and by Formulas (2.3)

The consideration of noncentrality in the fields of attraction of the considered celestial bodies does not introduce principal difficulties in the construction of the equations for ideal performance but does make these equations substantially more unwieldy, since the determination of the attraction fields requires introduction of n systems of coordinates each of which is rigidly attached to the t-th celestial body. In this case, it becomes necessary that the motion of each celestial body about its center of mass with respect to the system of coordinates $0_{a} \xi 76$ (or $O_{1} \xi \eta \zeta$) be known.
3. Let us derive the error equations, i.e. the equations describing the perturbed operation of the inertial system when the initial conditions of the equations for ideal performance are given inaccurately and the elements of the system have instrument errors. The error equations determine the stability of performance of the inertial system and the dependence of its accuracy upon the magnitude of errors in setting up the initial conditions and upon the instrument errors of the elements.

As the instrument errors we will take the basic ones: Δm and Δn [2]. It can be shown that any other errors can always be reduced to the equivalent basic ones.

From (2.2), assuming now

$$
\begin{equation*}
\mathbf{r}^{\prime}=\mathbf{r}+\delta \mathbf{r}, \quad \mathbf{m}^{\prime}=\boldsymbol{\omega}+\Delta \mathbf{m}, \quad \mathbf{n}^{\prime}=\mathbf{n}+\Delta \mathbf{n} \tag{3.1}
\end{equation*}
$$

we obtain

$$
\begin{array}{r}
\frac{d \mathbf{r}^{\prime}}{d t}=\int_{i}^{t}\left[\mathbf{n}^{\prime}-\mathbf{m}^{\prime} \times \frac{d \mathbf{r}^{\prime}}{d t}+\mathbf{g}\left(\mathbf{r}^{\prime}\right)\right] d t+\left(\frac{d \mathbf{r}^{\prime}}{d t}\right)^{\circ} \tag{3.2}\\
\mathbf{r}^{\prime}=\int_{0}^{t}\left(\frac{d \mathbf{r}^{\prime}}{d t}-\mathbf{m}^{\prime} \times \mathbf{r}^{\prime}\right) d t+\left(\mathbf{r}^{\prime}\right)^{\circ}
\end{array}
$$

Subtracting from (3.2) the equations for ideal performance (2.2) and noting that $m=\#$ we obtain, using the notation (3.1), the integral error equations

$$
\begin{gather*}
\frac{d \delta \mathbf{r}}{d t}=\int_{0}^{t}\left[\Delta \mathbf{n}-\Delta \mathbf{m} \times \frac{\Gamma d \mathbf{r}}{d t}-(\omega+\Delta \mathbf{m}) \times \frac{d \delta \mathbf{r}}{d t}+\right. \\
+\mathbf{g}(\mathbf{r}+\delta \mathbf{r})-\mathbf{g}(\mathbf{r})] d t+\frac{\left\{d \delta \mathbf{r}^{\circ}\right.}{d t} \tag{3.3}\\
\delta \mathbf{r}=\int_{0}^{t}\left(\frac{d \delta \mathbf{r}}{d t}-\Delta \mathbf{m} \times \mathbf{r}-(\omega+\Delta \mathbf{m}) \times \delta \mathbf{r}\right) d t+\delta \mathbf{r}^{\circ}
\end{gather*}
$$

Differentiating in the same system of coordinates in which the integrals are taken, i.e. in the $0 x y z$ system, we obtain the differential equation

$$
\begin{gather*}
\delta \mathbf{r}^{*}+2(\omega+\Delta \mathbf{m}) \times \delta \mathbf{r}^{*}+(\omega+\Delta \mathbf{m}) \times[(\omega+\Delta \mathbf{m}) \times \delta \mathbf{r}]+ \\
+\left(\omega^{\cdot}+\Delta \mathbf{m}^{*}\right) \times \delta \mathbf{r}-\mathbf{g}(\mathbf{r}+\delta \mathbf{r})+\mathbf{g}(\mathbf{r})=\Delta \mathbf{n}-2 \Delta \mathbf{m} \times \mathbf{r}-\Delta \mathbf{m}^{*} \times \mathbf{r}- \\
-\Delta \mathbf{m} \times(\omega \times \mathbf{r})-(\omega+\Delta \mathbf{m}) \times(\Delta \mathbf{m} \times \mathbf{r}) \tag{3.4}
\end{gather*}
$$

with the initial conditions

$$
\begin{align*}
& \delta \mathbf{r}(0)=\delta \mathbf{r}^{\circ} \\
& \delta \mathbf{r}^{\circ}(0)=\left(\delta \mathbf{r}^{\circ}+\left(\delta \omega^{\circ}-\Delta \mathbf{m}^{\circ}\right) \times\left(\mathbf{r}^{\circ}+\delta \mathbf{r}^{\circ}\right)\right. \tag{3.5}
\end{align*}
$$

For the given quantities $\omega, \Delta m, \Delta n, r$ projected on the oxyz axes and the intitial values $\delta r^{\circ}, \delta \omega^{\circ}\left(\delta r^{\circ}\right)^{\circ}$, the equation (3.4) yields the eriors in determination of the Cartesian coordinates x, y, z by the inertial system. Equation (3.4) is exact. If in it the products of the projections Δm and or are neglected, there results Equation

$$
\begin{align*}
& \delta \mathbf{r}^{*}+2 \boldsymbol{\omega} \times \delta \mathbf{r}^{\cdot}+\omega \times(\omega \times \delta \mathbf{r})+\omega \times \delta \mathbf{r}-\mathbf{g}(\mathbf{r}+\delta \mathbf{r})+\mathrm{g}(\mathbf{r})= \\
&=\Delta \mathbf{n}-2 \Delta \mathbf{m} \times \mathbf{r}^{*}-\Delta \mathbf{m}^{*} \times \mathbf{r}-\Delta \mathbf{m} \times(\omega \times \mathbf{r})-\omega \times(\Delta \mathbf{m} \times \mathbf{r}) \tag{3.6}
\end{align*}
$$

with the inftial conditions

$$
\begin{equation*}
\delta \mathbf{r}(0)=\delta \mathbf{r}^{\circ}, \quad \delta \mathbf{r}^{\circ}(0)=\left(\delta \mathbf{r}^{2}+\left(\delta \boldsymbol{\omega}^{\circ}-\Delta \mathbf{m}^{\circ}\right) \times \mathbf{r}^{2}\right. \tag{3.7}
\end{equation*}
$$

For $\Delta m=0$, i.e. when the perturbations are merely due to the accelerometer and the initial conditions errors, Equation (3.4) is equivalent to (3.6).

In (3.6) 6, $\mathbf{r}, \Delta \mathrm{m}, \delta \mathrm{r}$ are given in the projections on the $0_{1} x y z$ axes and ω is the absolute angular velocity of rotation for the $O_{1} x y z$ trinodron. Therefore (3.6) can also be written as

$$
\begin{equation*}
\frac{d^{2} \delta \mathbf{r}}{d t^{2}}+\mathbf{g}(\mathbf{r})-\mathbf{g}(\mathbf{r}+\delta \mathbf{r})=\Delta \mathbf{n}-\Delta \mathbf{m} \approx \frac{d \mathbf{r}}{d t}-\frac{d}{d t}(\Delta \mathbf{m} \times \mathbf{r}) \tag{3.8}
\end{equation*}
$$

where $\delta \mathbf{r}, \mathbf{r}, \Delta \mathbf{m}, \Delta \mathbf{n}$ are now determined by the projections on the axes of the $O_{2} \xi \eta 6$ coordinate set. Note that the homogeneous equation (3.8) corresponas exactiy not only to (3.6) but also to (3.4) where the products of the Δm and δx projections are retained.

Let us turn to the second group of equations for the inertial system performance, 1.e. to Equations (2.3) and (2.4).

We have from (2.3)

$$
\begin{equation*}
\delta \xi+(\omega+\Delta \mathrm{m}) \times \delta \xi=\xi \times \Delta \mathbf{m} \quad \text { (} \overline{\mathrm{m}} \mathrm{~m}) \tag{3.9}
\end{equation*}
$$

Or, with the same eliminations as in passing from (3.4) to 3.6)

$$
\begin{equation*}
\delta \xi^{*}+\omega \times \delta \xi=\xi \times \Delta m \quad \text { (Enら) } \tag{3.10}
\end{equation*}
$$

or finally, analogous to (3.8)

$$
\begin{equation*}
\frac{d \delta \xi}{d t}=\xi \times \Delta \mathbf{m} \tag{3.11}
\end{equation*}
$$

where as in (3.8) $\delta \xi ; \delta \eta, \delta 5$ and Δm are defined in the projections on the $0_{1} \xi 76$ axes. The initial conditions for Equations (3.9), (3.10) and (3.11) are obvious.

From (2.4) we have

$$
\begin{equation*}
\delta \xi=\delta \xi \cdot \mathrm{r} \tag{3.12}
\end{equation*}
$$

Denoting by δr_{2} the full error, and by δr_{2} the error defined by the second group of equations (3.9) and (3.12) or (3.10) and (3.12), we get

$$
\begin{equation*}
\delta \mathbf{r}_{1}=\delta \mathbf{r}+\delta \mathbf{r}_{2} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \mathbf{r}_{2}=(\delta \xi \cdot \mathbf{r}) \xi+(\delta \eta \cdot \mathbf{r}) \eta+(\delta \zeta \cdot \mathbf{r}) \zeta \tag{3.14}
\end{equation*}
$$

and or is the solution of the error equacions of the first group (3.4) or (3.6).

In concluding the deviation of the error equations let us pass from the vector equations (3.6), (3.10), (3.14) and (3.13) to scalar ones. If the variation in the noncentricality of the Earth's gravitational field is neglected and only the linear terms retained in the expansion of the difference $\mathbf{g}(\mathbf{r})-\mathrm{g}(\mathbf{r}+\delta \mathbf{r})$, then
$\mathbf{g}(\mathbf{r})-\mathbf{g}(\mathbf{r}+\delta \mathbf{r})=\delta \frac{\mathbf{r}}{r} g(r)=\frac{g(r)}{r^{2}}[r \delta \mathbf{r}-3 \mathbf{r}(\mid \mathbf{r}+\delta \mathbf{r}-r)]$
Projecting now (3.6) on the axes $x y z$ and taking into account (3.15), we get the first group of error equations in the form

$$
\begin{gather*}
\delta x^{*}+\left(\frac{g}{r}-\omega_{y}^{2}-\omega_{z}^{2}\right) \delta x+\left(\omega_{x} \omega_{y}-\omega_{z}\right) \delta y- \tag{3.16}\\
-2 \omega_{z} \delta y^{\circ}+\left(\omega_{x} \omega_{z}+\omega_{y}\right) \delta z+2 \omega_{y} \delta z^{*}-\frac{3 \sigma}{r^{2}} x(|\mathbf{r}+\delta \mathbf{r}|-r)= \\
=\Delta n_{x}-2\left(\Delta m_{y} z^{*}-\Delta m_{z} y^{\prime}\right)-\left(\Delta m_{y} z-\Delta m_{z} y\right)-\omega_{x}\left(\Delta m_{y} y+\Delta m_{z} z\right)- \\
-\Delta m_{x}\left(\omega_{y} y+\omega_{z} z\right)+2 x\left(\omega_{y} \Delta m_{y}+\omega_{z} \Delta m_{z}\right) \tag{xyz}
\end{gather*}
$$

The initial conditions of this group of equations are

$$
\begin{gather*}
\delta x(0)-\delta x^{\circ} \tag{3.17}\\
\delta x^{\circ}(0)=\left(\delta x^{\circ}\right)^{\circ}+\left(\delta \omega_{y}^{\circ}-\Delta m_{y}^{\circ}\right) z^{\circ}-\left(\delta \omega_{z}{ }^{\circ}-\Delta m_{z}{ }^{\circ}\right) y^{\circ} \tag{xyz}
\end{gather*}
$$

Let us find the equations for the projections on the axes $x y z$ of δx_{2}, $\delta y_{2}, \delta z_{z}$ of the vector δy_{2} given by the relationships (3.10) and (3.14).

Introducing the table of direction cosines

$$
\begin{array}{c|c|c|c}
\xi & x & y & z \tag{3.18}\\
\xi & \alpha_{11} & \alpha_{12} & \alpha_{13} \\
\eta & \alpha_{21} & \alpha_{22} & \alpha_{23} \\
\zeta & \alpha_{31} & \alpha_{32} & \alpha_{3 x}
\end{array}
$$

and observing that Equations (2.3) are equivalent to three systems of scalar differential equations [9]

$$
\begin{equation*}
\alpha_{i 1}+\omega_{y} \alpha_{i 3}-\omega_{2} \alpha_{i 2}=0 \quad(i=1,2,3) \quad(123, x y z) \tag{3.19}
\end{equation*}
$$

we obtain in place of (3.10)

$$
\begin{equation*}
\delta \alpha_{i 1}+\omega_{y} \delta \alpha_{i 3}-\omega_{z} \delta \alpha_{i 2}=\Delta m_{z} \alpha_{i 2}-\Delta m_{y} \alpha_{i s} \quad(i=1,2,3) \quad \text { (123, xyz) } \tag{3.20}
\end{equation*}
$$

Introducing the notation θ_{x}, θ_{y} and θ_{z} for the quantities

$$
\begin{align*}
\theta_{x} & =-\alpha_{12} \delta \alpha_{13}-a_{22} \delta \alpha_{23}-a_{32} \delta a_{33} \\
\theta_{y} & =a_{11} \delta a_{13}+a_{21} \delta \alpha_{23}+a_{31} \delta \alpha_{33} \\
\theta_{z} & =-a_{11} \delta \alpha_{12}-a_{21} \delta \alpha_{22}-\alpha_{31} \delta \alpha_{32} \tag{3.21}
\end{align*}
$$

and neglecting the squares of the variations of direction cosines α_{11} we get from (3.19) and (3.20) the relationships

$$
\begin{equation*}
\theta_{x}^{\cdot}+\omega_{y} \theta_{z}-\omega_{z} \theta_{y}=\Delta m_{x} \tag{3.22}
\end{equation*}
$$

But θ_{x}, θ_{y} and θ_{z} are, according to (3.21), the components of small rotation θ along the axes $x y z$. Therefore, (3.22) can be written in the form of Equation

$$
\begin{equation*}
\theta+\omega \times \theta=\Delta \mathbf{m} \quad\left(\frac{d \theta}{d t}=\Delta \mathbf{m}\right) \tag{3.23}
\end{equation*}
$$

with the initial condition $g(0)=\theta^{\circ}$ determined by (3.21).
Now it is obvious that $\delta \mathbf{r}_{2}=\theta \times \mathbf{r}$, wherefrom

$$
\begin{equation*}
\delta x_{2}=\theta_{y} z-\theta_{z} y \quad \text { (xyz) } \tag{3.24}
\end{equation*}
$$

The full error, according to (3.13), is

$$
\begin{equation*}
\delta x_{1}=\delta x+\delta x_{2} \tag{3.25}
\end{equation*}
$$

where δx, δy and δz are defined by (3.16), and $\delta x_{2}, \delta y_{z}$ and δz_{z} are given by (3.22) and (3.24).

If in computing the difference (3.15) one considers the variation in the noncentrality of the Earth's gravitational field, then it is necessary to retain the quadratic terms in the expansion of the spherical part of the gravitational field since they are of the same order of magnitude as the linear part of the expansion for the correction of nonsphericity (at least for the Earth's field, in any case).

Introducing the notation

$$
\begin{equation*}
\mathbf{g}(\mathbf{r})=-\frac{\mathbf{r}}{r} g(r)+\varepsilon(\mathbf{r}) \tag{3.26}
\end{equation*}
$$

where

$$
\mathbf{\varepsilon}(\mathbf{r})=\varepsilon_{x}(x, y, z) \mathbf{x}+\varepsilon_{y}(x, y, z) \mathbf{y}+\varepsilon_{z}(x, y, z) \mathbf{z}
$$

is a vector function of \boldsymbol{r} characterizing the nonsphericity of the attraction fleld, we get

$$
\begin{align*}
\mathbf{g}(\mathbf{r})-\mathbf{g}(\mathbf{r}+\delta \mathbf{r})= & -\frac{\delta \mathbf{r}}{r} g(r)+\frac{g(r)}{r^{2}}(\mathbf{r}+\delta \mathbf{r})\left[15(|\mathbf{r}+\delta \mathbf{r}|-r)-\frac{12 \mathbf{r} \delta \mathbf{r}}{r}-\frac{6 \delta \mathbf{r}^{2}}{r}\right]- \\
& -\left(\operatorname{grad} \varepsilon_{x} \delta \mathbf{r}_{1}\right) \mathbf{x}-\left(\operatorname{grad} \varepsilon_{y} \delta \mathbf{r}_{1}\right) \mathbf{y}-\left(\operatorname{grad} \varepsilon_{z} \delta \mathbf{r}_{1}\right) \mathbf{z} \tag{3.27}
\end{align*}
$$

Since (3.27) contains not only $\delta \boldsymbol{r}$ but also $8 \boldsymbol{r}_{1}$, then in this case the first group of the error equations is not separated from the second group. Similarly, the equations for ideal performance are not separated in considering the noncentrality of the attraction field.

It is easy to include in the first group of error equations the attraction differences of other (other than Earth) celestial bodies at the Earth's center and at the point 0 of the present position of the object in accordance with the equations for ideal performance (2.10).

In this case $\delta \boldsymbol{r}_{1}=\delta r_{12}$, and the error equations of both groups are also related.
4. Let us indicate now certain general properties of the error equations for the investigated generalized control system of inertial navigation, and also show how to obtain from them the error equations for particular systems considered in [1 to 5].

The error equations (3.16), (3.22), (3.24) and (3.25) permit a group of transformations determined by the arbitrary rotation of the $O_{1} x y z$ (Oxyz) trinedron in space. This property of the equations follows from the arbitrary orientation of the coordinate set (trinedron) oxyz and the arbitrary ω. It can also be proved directly, analogous to the proof in [2]. Therefore the analysis of the error equations for the inertial navigation system for any orientation of the set $O x y z\left(O_{1} x y z\right)$ can be carried out relative to another set of coordinates (trihedron) suitably selected. (Analogously as it was done in [2] relative to the rotation of the accompanying trihedron in azimuth).

Such a trihedron can be, for example, $O_{2} \xi 76$ fixed in space. In this case the error equations are obtained from (3.16), (3.22), (3.24) and (3.25) if one assumes $\omega=0$. In place of (3.16) we obtain

$$
\begin{gather*}
\delta \xi \cdot+\frac{g}{r} \delta \xi-\frac{3 g}{r^{2}} \xi(|\mathbf{r}+\delta \mathbf{r}|-r)= \\
=\Delta n_{\xi}-2\left(\Delta m_{n} \xi^{\cdot}-\Delta m_{\zeta} \eta\right)-\Delta m_{\eta} \zeta+\Delta m_{\zeta}^{\cdot} \eta \tag{4.1}
\end{gather*}
$$

which follows also from (3.8), and in place of (3.22), (3.24) and (3.25) we get

$$
\begin{equation*}
\theta_{\xi}^{\cdot}=\Delta m_{\xi}, \quad \delta \xi_{2}=\theta_{\eta} \xi-\theta_{\xi} \eta, \quad \delta \xi_{1}=\delta \xi+\delta \xi_{2} \quad(\xi \eta \xi) \tag{4.2}
\end{equation*}
$$

In Equations (4.1) and (4.2) $\Delta n_{\xi}, \Delta n_{\eta}, \Delta n_{\zeta}, \Delta m_{\xi}, \Delta m_{\eta}, \Delta m_{\zeta}$ are respectively, the projections of Δn and Δm on the $\xi \eta \zeta$ axes. They can be obtained from $\Delta n_{x}, \Delta n_{y}, \Delta n_{i}, \Delta m_{x}, \Delta m_{y}, \Delta m_{z}$ if $a_{1 j}$ (t) are known.

Equations (4.1) and (3.8) permit an interesting analogy. They are analogous to the variational equations of the motion of a particle of unit mass in the Earth's fleld of attraction when the motion of the point 1ε perturbed by the forces appearing on the right-hand side of Equations (4.1) and (3.8). In particular, the equations (4.1) and (3.8) are analogous to the equations of motion of a particle in a satelilite cabin [11]. The indicated analogy permits, in the latter case, the application to the analyais of the first group of error equations.for inertial navigation of the well developed methods of celestial mechanics.

If the attraction of celestial bodies other than the Farth is also considered, then the corresponding error equation will be analogous to the perturbed motion of a particle in the field of attraction of n bodies.

Equations (3.16), (3.22), (3.24) and (3.25) are the error equations for an arbitrary control system. They are valid, apparently, for the case when the orientation of the set $0 x y z$ is a given function of time, i. $e_{\text {. }}$ does not depend on the coordinates determined by the inertial system, as well as when the orientation of the trinedron is given as a function of coordinates determined by the inertial system. It is worth noting that in the latter case the position of the $0 x y z$ trinedron is perturbed by the errors of the com ordinate determination.

The homogeneous equations of the first group (3.16) are exact. They describe the perturbed operating conditions of the inertial system not only for small but also for large perturbations.

Equations (3.22) and (3.24) of the second group are the equations for small deviations, since in passing from (3.20) to (3.22), the squares of $\Delta_{\alpha_{11}}(t)$ were dropped. In order to obtain Equations (3.22) and (3.24) for large perturbations it is necessary to utilize the theory of finite and not small rotations [9] in transforming the exact equations (3.10) and (3.20).

Note that the second group of error equations for the inertial system is of the same form as was obtained in [2], and for given $a_{1,}(t)$ car be integrated by quadratures, which follow from (4.2).

Let us obtain from Equations (3.16) the equations of perturbed operation for the particular inertial navigation systems investigated in [1 to 5].

Assuming in (3.16)

$$
\omega_{x}=\omega_{y}=\omega_{z}=0
$$

$$
\begin{equation*}
\delta x=\delta \xi_{*}^{\prime}, \quad \delta y=\delta \eta_{*}^{*}, \quad \delta z=\delta \xi_{*^{\prime}}, \quad x=\xi_{*}, \quad y=\eta_{*} \quad z=\xi_{*} \tag{4.3}
\end{equation*}
$$

and noting that

$$
\begin{equation*}
r^{2}=\xi_{*}^{2}+\eta_{*}^{2}+\zeta_{*}^{2} \tag{4.4}
\end{equation*}
$$

therefore, within the accuracy of terms up to second order of magnitude

$$
\begin{equation*}
|\mathbf{r}+\delta \mathbf{r}|-r=\xi_{*} \delta \xi_{*}^{\prime}+\eta_{*} \delta \eta_{*}^{\prime}+\xi_{*} \delta \xi_{*}^{\prime} \tag{4.5}
\end{equation*}
$$

we obtain Equations (4.14) in the paper [2] for the inertial system where the integration takes place along the drections fixed in absolute space.

Directing the axis of of the set oxyz in the unperturbed state along \mathbf{v}, and noting that in this case

$$
\begin{equation*}
x=y=0, \quad z=r \tag{4.6}
\end{equation*}
$$

and within an accuracy of terms up to second order of magnitude

$$
\begin{equation*}
\delta x=r \beta, \quad \delta y=-r \alpha, \quad \delta z=\delta r, \quad|\mathbf{r}+\delta \mathbf{r}|-r=\delta z \tag{4.7}
\end{equation*}
$$

we obtain Equations (3.9) in [2] for the system with three accelerometers located along the axes of the Darboux trihedron on the sphere surrounding the Earth.

The first two equations in (3.16) in this case become the small oscillation equations for the Schuler pendulum [5 and 12], two-gyroscope vertical [4], gyro horizon compass [3], and the system considered in [1] if in (4.5) one lets

$$
\begin{equation*}
\delta z=\delta r=0 \tag{4.8}
\end{equation*}
$$

In [1 to 5], the small oscillation equations for systems near the position of relative equilibrium are given. Equations (3.16) are exact. They immediately yield the equations for perturbed motion for arbitrary and not necessarily small deviations.

Let, for example, the trinedron oxyz in the unperturbed position be the Darboux trihedron on a sphere [1 to 5] surrounding the Earth. Let us denote it by $0 x_{0} y_{0} z_{0}$ retaining the notation $x y z$ for the perturbed position. Let the perturbed position of the set $x y z$ relative to the unperturbed be characterized by two angles * α and β according to the direction cosines table

	x	y	z
x_{0}	$\cos \beta$	0	$\sin \beta$
y_{0}	$\sin \alpha \sin \beta$	$\cos \alpha$	$-\sin \alpha \cos \beta$
z_{0}	$-\cos \alpha \sin \beta$	$\sin \alpha$	$\cos \alpha \cos \beta$

The projections of the absolute angular velocity of the set oxyz upon its axes are expressed by means of the projections $\omega_{x_{0}}, \omega_{y_{0}}, \omega_{z_{n}}$ of the absoIute angular veloalty of the set $O x_{0} y_{0} \tilde{\mu}_{0}$ on the axes $x_{0} y_{0} z_{0}$ and the angles α and β as follows:

$$
\begin{align*}
& \omega_{x}=\omega_{x_{0}} \cos \beta+\omega_{y_{0}} \sin \alpha \sin \beta-\omega_{z_{v}} \cos \alpha \sin \beta+\alpha \cos \beta \\
& \omega_{y}=\omega_{y_{0}} \cos \alpha+\omega_{z_{0}} \sin \alpha+\beta \tag{4.10}\\
& \omega_{z}=\omega_{x_{0}} \sin \beta-\omega_{y_{0}} \sin \alpha \cos \beta+\omega_{z_{0}} \cos \alpha \cos \beta+\alpha \sin \beta
\end{align*}
$$

For the system with two accelerometers and the motion of the point 0 on a sphere of constant radius r it follows from (4.9) that

$$
\begin{equation*}
\delta x=-r \cos \alpha \sin \beta, \quad \delta y=r \sin \alpha, \quad \delta z=r(\cos \alpha \cos \beta-1) \tag{4.11}
\end{equation*}
$$

Substituting (4.10) and (4.1i) into the first two equations in (3.16) we obtain after obvious groupings and simplifications **

$$
\begin{gather*}
\beta^{\cdot \cdot}+\alpha^{2} \sin \beta \cos \beta+2 \alpha^{\circ}\left(\omega_{x_{0}} \sin \beta \cos \beta-\omega_{y_{0}} \cos \alpha \cos ^{2} \beta\right)+\omega_{y_{4}}(\cos \alpha-\cos \beta)+ \tag{4.12}\\
+\cos _{z_{0}} \beta+\sin \alpha+\omega_{x_{0}} \sin \alpha \sin \beta+\left(\omega_{0}^{2}-\omega_{z_{0}}^{2} \cos \alpha \cos \beta-\omega_{y_{0}}^{2}\right) \sin \beta \cos \alpha+ \\
+\omega_{x_{0}}{ }^{2}(\cos \beta-\cos \alpha) \sin \beta-\omega_{y_{0}}^{2} \sin ^{2} \alpha \sin \beta \cos \beta+ \\
+\omega_{x_{0}} \omega_{y_{0}}\left(\sin ^{2} \beta-\cos ^{2} \beta\right) \sin \alpha+ \\
+\omega_{x_{0}} \omega_{z_{0}}\left(\cos ^{2} \beta \cos \alpha-\cos \beta-\sin ^{2} \beta \cos \alpha\right)+ \\
+\omega_{y_{4}} \omega_{z_{0}}(2 \cos \alpha \cos \beta-1) \sin \alpha \sin \beta=0
\end{gather*}
$$

[^1]\[

$$
\begin{align*}
& a^{*} \cos \beta-2 \alpha^{\circ} \beta \sin \beta+2 \beta^{*}\left(-\omega_{x_{0}} \sin \beta+\omega_{y_{0}} \sin \alpha \cos \beta-\right. \tag{4.12}\\
& \left.\quad-\omega_{z_{0}} \cos \alpha \cos \beta\right)+\omega_{x_{0}}(\cos \beta-\cos \alpha)+\omega_{y_{0}}{ }^{\circ} \sin \alpha \sin \beta- \\
& \quad-\omega_{z_{0}}{ }^{\circ} \cos \alpha \sin \beta+\left(\omega_{0}{ }^{2}-\omega_{x_{0}}{ }^{2}-\omega_{y_{0}}{ }^{2}(1-\cos \alpha \cos \beta)-\right. \\
& \left.-\omega_{z_{0}}{ }^{2} \cos \alpha \cos \beta\right) \sin \alpha-\omega_{x_{0}} \omega_{y_{0}} \cos \alpha \sin \beta-\omega_{x_{0}} \omega_{z_{0}} \sin \alpha \sin \beta+ \\
& +\omega_{y_{4}} \omega_{z_{0}}\left(\sin ^{2} \alpha \cos \beta-\cos ^{2} \alpha \cos \beta+\cos \alpha\right)=0, \quad \omega_{0}{ }^{2}=g / r
\end{align*}
$$
\]

Equations (4,10) coincide exactly with the equations of the Schuler penduIum [5 and 12] the suspension point of which moves on the sphere of radius r. Indeed, the pendulum equations, as projected on the axes $x y z$, are of the form

$$
\begin{equation*}
H_{x}^{*}+\omega_{y} H_{z}-\omega_{z} H_{y}=-l F_{y}, \quad H_{y}^{*}+\omega_{z} H_{x}-\omega_{x} H_{z}=l F_{x} \tag{4.13}
\end{equation*}
$$

For the Schuler pendulum [5 and 12], the projections of angular momentum are

$$
\begin{equation*}
H_{x}=m l r \omega_{x}, \quad H_{y}=m l r \omega_{v}, \quad H_{z}=0 \tag{4.14}
\end{equation*}
$$

The components of on the $x_{0} y_{0} z_{0}$ are

$$
\begin{gather*}
F_{x_{0}}=-m r\left(\omega_{y_{0}}^{\cdot}+\omega_{x_{0}} \omega_{z_{0}}\right), \quad F_{y_{0}}=m r\left(\omega_{x_{0}}-\omega_{\psi_{0}} \omega_{z_{0}}\right) \\
F_{x_{0}}=m r\left(\omega_{x_{0}}{ }^{2}+\omega_{y_{0}}{ }^{2}\right)-m g \tag{4.15}
\end{gather*}
$$

The substitution of (4.14), (4.15) and (4.10) into (4.13) gives immediately Equations (4.12). Equations (4.12) are also the equations of perturbed motion of systems [1, 3 and 4].

For constant $\omega_{x_{0}}, \omega_{y_{0}}, \omega_{x_{0}}$, Equations (4.12) possess a first integral. In order to obtain it, it is sufficient to multipiy the first equation in (4.12) by β°, the second equation by $\alpha^{*} \cos \beta$ and to add them. Integration of the sum yields

$$
\begin{gathered}
V=(\alpha \cos \beta)^{2}+\beta^{2}-2 \omega_{0}{ }^{2} \cos \alpha \cos \beta+ \\
+\omega_{z_{4}}{ }^{2} \cos ^{2} \alpha \cos ^{2} \beta+\omega_{x_{*}}{ }^{2}\left(\sin ^{2} \beta+2 \cos \alpha \cos \beta\right)+ \\
+\omega_{y_{0}}{ }^{2}\left(\sin ^{2} \alpha \cos ^{2} \beta+2 \cos \alpha \cos \beta\right)-2 \omega_{x_{0}} \omega_{y_{0}} \sin \alpha \sin \beta \cos \beta+ \\
+2 \omega_{x_{0}} \omega_{z_{*}}(\cos \alpha \sin \beta \cos \beta-\sin \beta)+ \\
+2 \omega_{y_{0}} \omega_{z_{0}}\left(\sin \alpha \cos \beta-\sin \alpha \cos \alpha \cos ^{2} \beta\right)=\text { const }
\end{gathered}
$$

The Liapunov stability condition for the solution (4.12) follows from (4.16) as

$$
\begin{equation*}
\omega_{0}^{2}-\omega_{x_{0}}^{2}-\omega_{U_{0}}^{2}-\omega_{z_{2}}^{2}>0 \tag{4.17}
\end{equation*}
$$

It was obtained earlier in [6 and 7] from consideration of the equations reducible to (4.12).

Condition (4.17) is a sufficient condition. The papers [6 and 13] show that condition (4.17) can be considered as a necessary stability condition if fully dissipative forces are assumed in the system. In this connection, it is necessary to note that dissipative forces in inertial systems lead to the occurence of velocity deviations, and the systems of inertial navigation in the absence of velocity correction, tend to be designed so as to avoid dissipation. Therefore, arbitrary introduction of dissipative forces into the system requires great care in the investigation of stability.

In order to obtain the equations for perturbed performance in a system with two accelerometers and large deviations for $r=r(t)$ when r is determined from auxiliary sources not connected with the operation of the
inertial system, the r should be considered a given function of time in (4.11). If r is computed as a function of two coordinates determined by the inertial system, then in writing the equations of perturbed performance the variation of this function should be taken [2].

In order to obtain the equations for perturbed performance ror large deviations of the system [2] with the variables α, β and $8 r$, it is necessary in (3.16) to substitute

$$
\begin{gather*}
\delta x=-(r+\delta r) \cos \alpha \sin \beta, \quad \delta y=(r+\delta r) \sin \alpha \tag{4.18}\\
\delta z=(r+\delta r)(\cos \alpha \cos \beta-1)+\delta r
\end{gather*}
$$

in place of (4.11).
5. Let us investigate the stability of the inertial system performance for the case when the unperturbed oz-axis of the set oxyz is directed along r, and ω_{x}, w_{y}, w_{z} and r are constant. From (3.16)

$$
|\mathbf{r}+\delta \mathbf{r}|-r=\delta z+o(\delta z)
$$

Retaining now on the right-hand side of (5.1) only $8 z$, we note that Equations (3.16) become linear with constant coefficients, the characteristic equation of which is a cubic with respect to the square of the unknown $q=p^{2}$

$$
\begin{gather*}
q^{3}+2 q^{2}\left(\omega_{x}^{2}+\omega_{y}{ }^{2}+\omega_{z}^{2}\right)+q\left[-3 \omega_{0}{ }^{4}+3 \omega_{0}{ }^{2}\left(\omega_{x}^{2}+\right.\right. \\
\left.\left.\quad+\omega_{y}{ }^{2}-2 \omega_{z}^{2}\right)+\left(\omega_{x}^{2}+\omega_{y}{ }^{2}+\omega_{z}^{2}\right)^{2}\right]- \\
-\omega_{0}^{2}\left(\omega_{0}^{2}-\omega_{x}^{2}-\omega_{y}{ }^{2}-\omega_{z}{ }^{2}\right)\left(2 \omega_{0}^{2}+\omega_{x}^{2}+\omega_{y}{ }^{2}-2 \omega_{z}^{2}\right)=0 \tag{5.2}
\end{gather*}
$$

For stability (non asymptotic) Equation (5.2) must have, as is known, negative or zero roots, and to multiply roots of the characteristic equation of the system (3.16) should correspond linear, elementary divisors of the characteristic matrix.

In order to investigate the stability of the systell (3.16), in the present case, one can utilize the fact that it can be considered as describing the motion of a particle of unit mass under the action of potential and gyroscopic forces.

The expression for the potential function can be written

$$
\begin{gather*}
U=-\frac{1}{2}\left[\left(\omega_{0}^{2}-\omega_{y}{ }^{2}-\omega_{z}^{2}\right) \delta x^{2}+\left(\omega_{0}^{2}-\omega_{x}^{2}-\omega_{z}^{2}\right) \delta y^{2}-\right. \\
-\left(2 \omega_{0}^{2}+\omega_{x}^{2}+\omega_{y}{ }^{2}\right)_{z} \delta z^{2}+2 \omega_{x} \omega_{y} \delta x \delta y+ \tag{5.3}\\
\left.+2 \omega_{x} \omega_{z} \delta x \delta z+2 \omega_{y} \omega_{z} \delta y \delta z\right]
\end{gather*}
$$

The following expressions can be considered as gyroscopic forces:

$$
\begin{equation*}
2 \omega_{2} \delta y^{*}-2 \omega_{y} \delta z^{*} \quad(x y z) \tag{5.4}
\end{equation*}
$$

since the matrix of coefficients of these forces is antisymmetric [14]. The system (3.16) has in this case the energy integral

$$
\begin{equation*}
\delta x^{2}+\delta y^{2}+\delta z^{2}-2 U=\text { const } \tag{5.5}
\end{equation*}
$$

which can be obtalned drectly if Equations (3.16) are added, multiplied respectively by $\delta x^{\circ}, \delta y^{*}, \delta z^{*}$, and integratcd

Fig. 1

If the gyroscopic forces (5.4) are rejected then there will remain only the potential forces. For stablilty of equilibrium under the action of only potential forces, the potential function must have a maximum at the equilibrium point. Since the potential function (5.3) is a quadratic form, the conditions for a maximum are the Sylvester conditions for positive-definiteness of of a quadratic from. In the present case they are the inequalities

$$
\begin{equation*}
\omega_{0}^{2}-\omega_{x}^{2}-\omega_{y}^{2}-\omega_{z}^{2}>\dot{0}, \quad 2 \omega_{0}^{2}-2 \omega_{z}^{2}+\omega_{x}^{2}+\omega_{y}^{2}<0 \tag{5.6}
\end{equation*}
$$

In Fig. $1 \Omega^{2}=w_{x}^{2}+w_{y}^{2}$, the stralght lines I and 2 corresponding to the equations $w_{0}^{2}-w_{i}^{2}-n^{2}=0$ and $2 w_{0}^{2}+n^{2}-2 w_{z}^{2}=0$ are plotted. The figure shows that the regions defined by (5.6) do not intersect, anf. therefore, the potential function has no maximum.

Since in the present case the potential iunction is homogeneous of second degree then, according to the known theorem of Liapunov [15], the instability follows from the absence of the maximum without the necessity of considering the terms of higher orders.

Let us return to the gyroscopic forces (5.4).
In the regions (1) and (3) (see Fig. 1) where the degret of instability* of the conservative system is odd, the gyroscopic forces, according to the Thomson-Tait theorem [16], cannct stabilize the equilibrium.

In the region (2), where the degree cf instability is even, the pocsibility of stabilization by gyroscopic forces remains in principle. This stabilization, as is known [15], has a temporary character and is destroytd by the forces of full dissipation.

The stabilization by gyroscopic forces results if, for example,

$$
\begin{equation*}
\omega_{x}^{2}+\omega_{y}^{2}=\omega_{0}^{2}, \quad \omega_{z}^{2}=\varepsilon^{2} \tag{5.7}
\end{equation*}
$$

where ϵ^{2} is a sufficientiy smali quantity.
It can be easily shown that the polynomial (5.2) satisfies in this case the Hurwitz conditions. The discriminant Δ of the cubic equation obtained from (5.2) by substitution of the variable

$$
\begin{equation*}
y=q+2 / 3\left(\omega_{0}^{2}+\varepsilon^{2}\right) \tag{5.8}
\end{equation*}
$$

* The number of negative stability coefficients of Poincaré [15].
is negative

$$
\begin{equation*}
\Delta=-\omega_{0}^{10 \varepsilon 2} g^{-3}<0 \tag{5.9}
\end{equation*}
$$

All roots of the characteristic equation are therefore simple and purely imaginary.
6. In conclusion, let us investigate the stability of a system with three accelerometers when the orientation of the set $0 x y z$ is arbitrary, and $|r|$ for $g(r)$ is given, in addition, from a source outside the inertial system.

In this case it is necessary to make the following assumption in the error equations (3.16)

$$
\begin{equation*}
|\mathbf{r}+\delta \mathbf{r}|-\mathbf{r}=0 \tag{6.1}
\end{equation*}
$$

and the error in $|r|$ should be referred to the right-hand side parts in (3.16).

It follows from (3.16), (3.8) and (4.1) that the homogeneous error equations become

$$
\begin{equation*}
\left.\delta \xi^{*}+\frac{g}{r} \delta \xi=0 \quad \text { (} 5 \cdot r_{i}\right) \tag{6.2}
\end{equation*}
$$

From (6.2) it follows that for $r=$ const when $\omega_{0}^{2}=g / r$ is constant, the perturbed motion of the system is stable for any $w_{x}(t), w_{y}(t), w_{x}(t)$.

In this case for given $a_{i j}(t)$ the solution of (3.16) follows immediately from (6.2).

For constant ω_{x}, w_{y}, w_{z} the stability can be detected also without reference to equations (3.8) and (4.1).

In the present case the condition for the maximum of the potential function is reduced to one inequality

$$
\begin{equation*}
\omega_{0}^{2}-\omega_{x}^{2}-\omega_{y}^{2}-\omega_{z}^{2}>0 \tag{6.3}
\end{equation*}
$$

Outside of (6.3) the degree of instability is even and the equilibrium is stabilized by gyroscopic forces. The latter is easily proved by reviewing the characteristic equation which, if written in terms of the square of the unknown, is

$$
\begin{equation*}
q^{3}+\left(\omega_{0}^{2}+2 \omega^{2}\right) q^{2} \div q\left(3 \omega_{0}^{4}+\omega^{4}\right)+\omega_{0}^{2}\left(\omega_{0}{ }^{2}-\omega^{2}\right)^{2}=0 \tag{6.4}
\end{equation*}
$$

where for simplicity the notation
has been introduced.
The polynomial (6.4) satisfies the Huwitz conditions, since always

$$
\begin{equation*}
\left(3 \omega_{0}^{2}+2 \omega^{2}\right)\left(3 \omega_{0}^{4}+\omega^{4}\right)-\omega_{0}^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}>0 \tag{6.6}
\end{equation*}
$$

The discriminant Δ of the cubic equation

$$
\begin{equation*}
y^{3}+3 b y+2 c=0 \tag{6.7}
\end{equation*}
$$

which is obtained from (6.4) by the change of variable

$$
\begin{equation*}
y=q+\frac{3 \omega_{0}^{2}+2 \omega^{-}}{3} \tag{6.8}
\end{equation*}
$$

is nonpositive

$$
\begin{equation*}
\Delta=-\frac{4}{27} \omega_{0}^{2} \omega^{6}\left(4 \omega_{0}^{2}-\omega^{2}\right)^{2} \leqslant 0 \tag{6.9}
\end{equation*}
$$

If $\omega \neq 0,4 \omega_{0}^{2}-\omega^{2} \neq 0$, and $\omega_{0}^{2}-\omega^{2} \neq 0$, then (6.4) has three different real roots. Consequently, the characteristic equation has three pairs of different purely imaginary roots.

For $\omega \neq 0,4 \omega_{0}^{2}-\omega_{0}^{2} \neq 0$, and $\omega_{0}^{2}=\omega^{2}$ Equation (6.4) has along with two real negative roots, also a zero root, and the characteristic equation has a multiple zero root.

If $w=0$, then (6.4) has a triple root $q_{1,2,3}=-\omega_{0}{ }^{2}$, and the characteristic equation, respectively, a pair of imaginary roots of the same multiplicity.

Finally, for $4 \omega_{0}{ }^{2}-\omega^{2}=0$ Equation (6.4) has a multiple root $q_{2,3}=-\omega_{0}{ }^{2}$, and the characteristic equation a pair of imaginary multiple roots.

It can be shown that when the roots of the characteristic equation are multiple, the elementary divisors of the characteristic matrix of the system (3.16) in the present case remain linear.

The author is indebted to A.Iu. Isniinskil for review of the manuscript and useful remarks.

BIBLIOGRAPHY

1. Ishlinskii, A.Iu., Ob uravnenilakh zadachi opredelenita mestopolozhenila ob"ekta posredstvom giroskopov 1 izmeritelei uskorenil (On the equations for the problem of determining the position of an object by means of gyroscopes and accelerometers). PMM Vol.21, № 6, 1957.
2. Andreev, V.D., K teori1 inertsial 'nykh sistem avtonomnogo opredelenila koordinat dvizhushchegosia ob"ekta (On the theory of inertial systems for the self-contained determination of the coordinates of a moving object). PMN Vol.28, № $1,1964$.
3. Ishlinski1, A.Iu., K teoril girogorizontkompasa (To the theory of the horizon gyrocompass). PMM Vol.20, N 4, 1956.
4. Ishlinskif, A.Iu., Teorila dvukhgiroskopicheskoi vertikali (Theory of the two-gyroscope vertical). PMM Vol.21, № 2, 1957.
5. Andreev, V.D., Ob odnom sluchae malykh kolebanil fizicheskogo maiatnika s podvizhnoi tochkol opory (on a case of small oscillations of a physical pendulum with a movabie suspension point'). PMN Vol.22, № 6, 1958.
6. Merkin, D.R., Ob ustolchivosti dvizhenila giroramy (On the stability of motion of a gyroscope frame). PMM Vol.25, № 6, 1961.
7. Zhbanov Iu.K., K issledovanilu svobodnykh kolebanil v sisteme avtonomnogo opredelenila koordinat dvizhushchegosia ob"ekta (On the investigation of free oscillations in the system of autonomous determination of moving body coordinates). PMM Vol. 24, № 6, 1960.
8. Appell, P., Teoreticheskaia mekhanika (Theoretical Mechanics). Fizmatgiz Vol.2, 1960.
9. Lur'e, A.I., Analiticheskaia mekhanika (Analytical Mechanics). Fizmatgiz, 1961.
10. Duboshin, G.N., Teorila pritiazhenila (Theory of Attraction). Fizmatgiz, 1961.
11. Lur'e, A.I., Svobodnoe padenie material'noi tochki v kabine sputnika (Free fall of a material point in a satelite cabin). PNH Vol. 27 , No 1 , 1963.
12. Isnlinskii, A. Iu., ob otnositl'nom ravnovesil fizicheskogo maiatnika s podvizhnoi tochkoi opory (on the relative equilibrium of a physical pendulum with a moving point of support). PMM Vol. 20, № 3, 1956.
13. Koshliakov, V.N., Ob ustoichivosti girogorizontkompasa pri nalichil dissipativnykh sil (on the stability of a horizon gyrocompass with dissipative forces). $P M N$ Vol.26, No 3, 1962.
14. Merkin, D.R., Giroskopicheskie sistemy (Gyroscopic Systems). Gustekhizdat, 1956.
15. Chetaev, N.G., Ustoichivost* duizhenila (Stability of Motion). Gostekhizdat, 1955.
16. Thomson, W. and Tait, P., Treatise on Natural Philosophy, Vol. I, Cambridge University Press, 1879.

[^0]: * Here the suspension is assumed tc be a spring while in some practical accelerometers the elastic forces may also be different, e.g. electromagnetic.

[^1]: * The third rotation is unessential. It can be referred to the position of the $x_{0} y_{0} x_{0}$ set.
 ** The equations are homogeneous.

